
 THE APPROXIMATE DETERMINATION OF THE FORM

 OF MACLAURIN'S SPHEROID*

 BY

 GEORGE HOWARD DARWIN

 Prejace.

 Spherical harmonics render the approximate determination of the figure of a

 rotating mass of liquid a very simple problem. If p be the density, e the ellip-

 ticity, and co the angular velocity of the spheroid, the solution is

 (o2 8

 2wpI5 e.

 This result is only correct as far as the first power of the ellipticity, but M.

 POINCAR1 has recently shown t how harmolnic analysis may be so used as to give
 results which shall be correct as far as squares of small quantities; and I have

 myself used his method for the determination of the stability of the pear-shaped

 figure of equilibrium. j

 Both these papers involved the use of ellipsoidal harmonic analysis, and it

 would be rather tiresome for a reader to extract the method from the complex

 analysis in which it is embedded. It therefore seems worth while to treat the

 well-worn subject of MACLAURIN'S spheroid as an example of the method in

 question. It will appear below that it would have been possible to obtain a

 more accurate result thani that stated above, even if the rigorous solution of the
 problem had been beyond the powers of the mathematician.

 My own personal reason for undertaking this task was that I desired a sort

 of collateral verification of the very complicated analysis needed in the case of

 my previous investigation.

 ? 1. Afethod of defining the spheroid.

 Let a sphere S be described concentrically with the spheroid, and let it be

 sufficiently large to enclose the whole of the spheroid. I call R the region

 * Presented to the Society December 29, 1902. Received for publication December 13, 1902.

 t Philosophical Transactions of the Royal Society, vol. 198 A (1902), pp. 333-373.
 + lb., vol. 200 A, pp. 251-314.
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 114 G. H. DARWIN: THE APPROXIMATE DETERMINATION OF [April

 between the sphere S and the spheroid; and suppose the density of the liquid

 in S to be + p, and that in R to be - p.
 If St denotes any surface spherical harmonic of colatitude 0 and longitude

 4, it is -usual to define the corresponding deformation of a sphere of radius a by

 the equation r = a (1 + eS5 ). Buit in the present investigation it will be found
 that there is a great saving of labor by defining it by the equation

 r3 =a3(1+3e8).

 The two forms give identical results as far as the first power of the ellipticity

 e, but not so when we are to consider the squares of small quantities.

 In genieral I define St by one of the two alternative forms P`(,U) ?Sso,
 where , = cos 0. But in the case of the second zonal harmonic (s = 0, i = 2)

 it is convenient to write
 So 1 -2

 The fourth zonal harmonic will occur explicitly below, and in accordance with

 -the general definition to be adopted we have

 84 =3 5P4_ 15 P2 + 3

 The angular velocity is to be denoted by co, and the colatitude 0 or cos-1' is
 measured from the axis of rotation.

 We must now assume a general form for the equation to the spheroid, and

 shall subsequently determine the several ellipticities so that the surface may be

 a figure of equilibrium.

 The radius of S being denoted by a, we may write the equation to the sur-

 face of the spheroid in the form

 r3= a3 [t1- 3c + 3eS2+ 3fS4 + 3EZfsSU.

 In this expression e is the ellipticity corresponding to the second zonal har-

 monic, and it represents that term which exists alone in the ordinary approxi-
 mate solution. Then I suppose thatf andf" are quantities of the order e2, and

 that there are fg corresponding to all possible harmonics excepting the second
 and fourth zonal ones. Thus all the fs are of order e2, excepting f2 and f4
 which are zero. Lastly c is an arbitrary constant, and is only subject to the con-

 dition that it is greater than the greatest positive value of eS2 +fS4 + ,f S.
 This condition enisures that S shall envelope the whole spheroid.

 It is now convenient to replace the radius vector r by a new variable T,

 defined by

 (1) =T 3a3

This content downloaded from 137.132.123.69 on Mon, 08 Jul 2019 05:24:38 UTC
All use subject to https://about.jstor.org/terms



 1903] THE FORM OF MACLAURIN S SPHEROID 115

 Thus the equation to the spheroid may be written

 T=C-eS2-.fS4-Efs S:X

 The problem will be solved by making the energy of the system stationary.

 It will therefore be necessary to determine the energy lost in the concentration

 of the spheroid from a condition of infinite dispersion. This will involve the

 use of the formula for the gravity of S, and since the whole region B is inside

 S, we only require the formula for internal gravity.
 If we were to continue the developulents from this point all the formulae

 would involve the constant c. But since it is merely needed for defining a

 sphere of reference of arbitrary size, it cannot finally appear in the formula for

 the energy. It is useless to enicumnber the analysis by the introduction of a con-

 stant which must disappear in the end, and it is legitimate and much shorter to

 treat c as zero from the first. It is however easier to maintain a clear concep-

 tion of the processes if we continue to discuss the problem as though c were not

 zero, and as if S enveloped the whole spheroid. With this explanation we may

 write the equation to the spheroid in the form

 (2) T- eS2- fS4 - f S .

 ? 2. The lost energy of the system.

 If the negative density in R were transported along conical tubes emanating
 from the center of S, it might be deposited as surface density on S; I refer

 to such a condensation as - C. I do not, however, suppose the condensation

 actually effected, but I imagine the surface of S to be coated with equal and

 opposite condenlsations + C and - C.

 The system of masses forming the spheroid may then be considered as being

 as follows:

 Density + p throughout S, say + S.

 Negative condensation on S, say - C.

 Positive condensation on S and negative volume density - p throughout R.

 This last forms a double system of zero mass, say D, and D = C - R.

 The lost energy of the system clearly involves the lost energy of each of these

 three with itself, and the mutual lost energy of the three taken two and two

 together. Thus the lost energy miiay be written symbolically

 -SSHICCH DD -SC SD- CD.

 Since D is C - R, the last three terms are equivalent to

 -SC+(S -C)(C -R) =-SR+ CR -CC.
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 116 G. H. DARWIN: THE APPROXIMATE DETERMINATION OF [April

 Thus the gravitational lost energy is

 - SS- SR + CR-1 CC?+ DD.
 The lost energy of the system, as rendered statical by the imposition of a

 rotation potential, is clearly 'A Co2, where A is the moment of inertia of the
 spheroid about the axis of rotation.

 If A, denotes the momnent of iniertia of the sphere 8, and Ar the moment of

 inertia of the region R considered as being filled with positive density + p, we
 clearly have

 A=As-A.
 $ r

 Thus if E denotes the lost energy of the system as rendered statical by the

 imposition of a rotation potential

 (3) E= SS- SR?U CR -I?CC+ 2DD ICo2(A- A,).
 ? 3. The energy 11 SS- SR + CR -1 CC.

 It is in the first place necessary to obtain certain preliminary analytical and
 numerical results.

 If we write do for du do, it is clear that an element dv of volume is given by

 dv=a3 dTrdu = -dT do,
 47tp

 where M is the mass of the sphere S.

 When we integrate throughout the region R the limits of r are - eS2 - fS,
 - S8 to zero.

 I now define certain integrals, viz:

 ?4fiS3- )2d 39 4J( S2)2Si do.

 It is well known that

 2 (i + S)!

 and since in every case, excepting that of S2, S p(,eio, we have

 3 (i + s)!
 OS 2i + 1 (i - s)!'

 Since S2 2 -P2(, k), the value of +2 is derivable from the same general
 formula. Hence we have

 (4) T)=. h_a4 (

This content downloaded from 137.132.123.69 on Mon, 08 Jul 2019 05:24:38 UTC
All use subject to https://about.jstor.org/terms



 1903] THE FORM OF MACLAURIN S SPHEROID 117

 Since ,SJ involves either cos sf or sin so), w- vanishes unless s = 0; hence we
 need only consider wc.

 The function ( S2)2 may be expanded in terms of zonal harmonics. Assume

 then

 ( S2)2= ~'SDiS

 Multiplying both sides by 3 Si/4wr, and integrating throughout angular space,
 we find

 Co 7=t fi and (S)2x jS

 But, by actual substitution,

 (2 )2 45 o4 S2+ S4. 42 5 0- 2 1 m 4
 Therefore

 (4) wo 4 a2 4 co 8
 00 45' 02 21' 04359

 and all the higher co's vanish.

 It will be noticed that co b2, hence we have wo0) =sb2. Also

 4 16 8
 (4 a) -- c2 32.5.7 W4 3.5.7

 The equation to the spheroid possesses a certain property which permits us to

 effect a great saving in the subsequent work. If k be any arbitrary number it

 is clear that to the order of squares of small quantities we may write the equa-

 tion to the spheroid in the form

 T- (e +ke3)AS2-fS4- E/f S,.

 since we have only imported a new term of the order e3. Now when k is zero

 the energy will be found to involve terms in e , e3 , e4, e2f, f2, (fS. )2. If then
 we write e + ke3 for e, as is clearly permissible, the term in e2 will give rise to
 a term in 2ke4. Hence it follows that the term in e4 in the energy is really
 indeterminate, and that the rietention of it would give rise to a fictitious

 accuracy. It is therefore permissible to omit the term in e4, while retaining

 other terms of the fourth order. Again the moment of inertia will involve

 terms in e, e2, e3, ef, and the same argument shows that the retention of the
 term in e3 would give rise to a fictitious accuracy.*

 It is now necessary to determine the volume of the region R; it is

 a3ffdTdo =- a3f [eS2 +fS4 + Sf! S'] do- = 0.

 * If the coefficient of the terms in e2 and e were zero, the term in e4 would not be fictitious.
 This was the case in discussing the pear shaped figure of equilibrium.
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 118 G. H. DARWIN: THE APPROXIMATE DETERMINATION OF [April

 From this it follows that the mass of S is equal to that of the spheroid, and

 therefore M is the mass of the spheroid. It is this result which makes the

 choice of T as independent variable so convenient.

 We are now in a position to determine the several contributions to the lost

 energy.

 The lost energy of the sphere, denoted by I SS, is known to be 3XP/5a.
 This is a constant and may be omitted as being of no further interest. The

 internal potential of S is given by

 V =237p(3a2 _ r2)

 But r 3- a3(1 -37), and r2 = a2(1 2- T2* Therefore as far as

 squares of small quantities,

 a - (T7+ 72).

 Since the volume of R is zero the first term of V contributes nothing to the

 lost eniergy SR, and the second term of V will give the whole. Tberefore to
 the fourth order

 SR= - a T+ 2-r2) d-du

 = f 8--e28 2)2 + 2 qf, 24 + 2Eqf'. 82 S' +f2( 84)2 + 2 efS. SuSa

 =2a [ e22+ f2 4+Z(f2i .e32-e2fi4].
 Thus on rearranging the terms we have

 12

 (5) aSS SR= 0[ 2e2 2+ 6eo 2 + 1e2fc - f 2 24- 1E(f)2 8]

 We have next to consider the terms depending on the condensation C. Since

 dv/ldr =-a3du the amount of nmatter in the region R, if filled with density + p,
 which stands on an element of unit area is

 pCl fd= pa(eS2 + fS4? Ef S').

 This expression gives the surface density of the condensation + C, and it is

 expressed in surface harmonics.

 Now by the usual formula of spherical harmonic analysis the internal poten-

 tial of surface density paES8 is
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 1903] THE FORM OF MACLAURIN'S SPHEROID 119

 47wp ri 3M rt
 2i + 1 ai- -(2i + 1 )a a'

 As far as the first power of T,

 rui a(1 - iT),*'

 but in the case i = 2, as far as squares of small quanltities,

 r2= a2(1 -2T -r2).

 Hence it follows that the interlnal potential, say VK of the condensatioln + C is
 given by

 VcV =-[e( l -- 2T - T) 82 + s /(1- 4T) 8,
 (6) + ( - i)9

 (i1-

 On multiplying this by 3MdTda/47r and integrating throughout R we shall
 obtain the lost energy CR.

 Thus

 CR_ = > VKdTdo

 4 J L eAS + 9fS4 + E 2i + 1f-S
 -T(-e2+. f4 +Z> f5 T2eS12dT do-

 9Jf2 r(F 1 lfS + 2 +1-f
 'Tf4+ + +- +fS +ZfS =47ra.(;[-e2 9S+ 2-.+ 1 -iz][A2J4 /,

 -4- -[-eS2 + tf84 + E2 +lfsS;][e2(S2)2?2efS2S4

 4- E f,"8, 19 3( S )3 S} + 2ZeftS2SJI- 'e 2) e S2 d-.

 The term in e4 may be now omitted in accordance with the principle explained
 above, anid therefore

 CR =3 2 b3J2V2 + 91 S14 + 2 1 _ (f$)21 f 2

 (7) + 1 [2e%i2 + 9 e2fo4 + e t4] }

 l 22 02 +1 e(o + 2je2f04 + gf2P4 ? 2 o 1 _ jj
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 120 G. H. DARWIN: THE APPROXIMATE DETERMINATION OF [April

 In order to find ICC we have only to deal with surface density. Then the

 value of V at the surface is given by (6) with 7r = 0; therefore

 - 2a[eS2 c 9 fS 4?+ 1

 An element of mass of the surface density + C is

 - [eS2 + fS4 + Z f-,S] d-r.

 Multiplying these two together and iultegratinog, we find

 2a =3t/-[5 202+9, 2O4+E-2it1 ()2.
 And subtracting this from (7)

 CR(- GR CC= 3 [ -2 _e202 + 5e32 + 28e 2f., + l f 2

 + Z2? (fi )2q] +2- 2i + I E f)
 Again adding this to (5) we have

 'S-SR 1 R- -C =- - ey 2+ 7 1 eYo (9) 2 f +2 -3e3w 3 ?(y!4
 -3./ 04 E2 + ('+X

 It remains to determine the value of the term 1-DD, and for this end we must

 investigate the theory of double layers, according to the ingeniouis method de-
 vised by M. POINCARP.

 ? 4. Double layers.*

 Let a closed surface S be intersected at every poinit by a member of a family
 of curves, and let a be the angle between the curve and the outward normal at

 any point. At every point of S measure alolng the curve an infinitesimal arc r,

 and let T be a function of the two co6rdinates which determine position on S.

 The extremities of these arcs define a second surface S', and every element of

 area do- of S has its corresponding element do-' on S'. Suppose that S is

 coated with surface density 8, and that S' is coated with surface density -8',
 where 3do- = 8'do'. The system SS' may then be called a double layer, and

 its total mass, is zero. We are to discuss the potential of such a system.

 Let U+ and U be the external and internal potentials of density 8 on 5,
 and UO their common value at a point P of S. At P take a system of rec-

 * This section is contained in my paper on the Stability of the Pear-sh(ped Figure of Equilibrium,

 Philosophical Transactions of the Royal Society, vol. 200A (1903), pp. 251-314but

 is reproduced here in order that the present investigation miay be complete in itself.
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 1903] THE FORM OF MACLAURIN S SPHEROID 121

 tangular axes, n being along the outward normal, and s and t mutually at right

 angles in the tangenrt plane.

 In the neighborhood of P

 U+= U?+n d U+ J s dU+ + t d U+
 dn ds d
 dU_ dU dU

 , dn ds+t dt

 In the first of these n is necessarily positive, in the second negative.

 Now dU+/ds = dU_/ds = dU/ds; and the like holds for the differentials
 with respect to t.

 Also by PoIssoN's equation,

 d U dU+ 47r8,
 dn dn =

 Let PP' be one of the family of curves whereby the double layer is defined,

 and let P' lie on S', so that PP' is 7. By the definition of a the normal

 elevation of S' above S is 7 cos a.

 Let v, v' be the potentials of the double layer at P and at P'.

 The potential of S' at P' differs infinitely little in magnitude, but is of the

 opposite sign from that of S at P; it is therefore - U0. The point P' lies
 on the positive side of S at a point whose coordinates may be taken to be

 n =Tcosa, s= TSill a, t= 0.

 Therefore the potential of S at P' is

 d U+ dU
 U0 + T cos a + T sin a--

 Therefore

 ==csLdU+ . dU V' T COS a d ++ T sin ad
 dit ds

 Again the potential of S at P is UO, and since P lies on the negative side
 of S' and has co6rdinates relatively to the n, s, t axes at P' given by

 n= -Tcosa, s -Tsina, t=O;

 since further the density on 8' is niegative, we have

 dU . dU
 V=Tcosa a--- +Tsn a--

 dn ds
 Therefore

 V-v T cos a d - + I 47rr8 cos a. L d dn J
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 The differential with respect to n of the potential of S falls abruptly by 4wrS

 as we cross S normally from the negative to the positive side; and the differ-

 ential of the potential of 5' rises abruptly by the same amount as we pass on

 across 5'. It follows that dv/dn on the inside of S is continuous with its

 value on the outside of 5'.

 The surface S to which this theorem is to be applied is a slightly deformed

 sphere, and the curves are radii drawn from the center of the sphere which is

 deformed. The radii are normal to the sphere, and where they meet S the

 angle a will be proportional to the deformation whereby S is derived from the

 sphere. It follows that cos a will only differ from unity by a term propor-

 tional to the square of the deformation, and as it is only necessary to retain

 terms of the order of the first power of the deformation, we may treat cos a

 as unity.

 We thus have the result

 v - v' = 47rr8.

 Suppose the curve PP' produced both ways, and that Mo, 31M are two points
 on it, either both oni the same side or on opposite sides of the double layer.

 Let X,, XI be equal to ', let ' be measured in the same direction as n, and
 let ' be a small quantity whose first power is to be retained in the results.

 Let vo, vI be the potential of the double layer at 1O and MX respect-
 ively.

 When ' does not cut the layer we have

 dv

 and when it does cut the layer

 dv
 r> r- V 47rT8 ?-d~-.- 0 1dn'

 In the application which I shall make of this result the surface S' will actu-

 ally be inside S. Then vo will denote the potential at any point not lying in
 the infinitely small space between S and S', and v1 is the potential at a point

 more towards the inside of the sphere by a distance '; 8 is the surface density
 on the external surface S and 7 is measured inwards. If then we still choose

 to measure n outwards, as I shall do, our formula becomes

 v0 - v d- = 47rT8 or 0,

 according as ? does or does not cut the double layer.

 It may be well to remark that v being proportional to T8, 4dv/dn is siall
 compared with 47rrT. It is also important to notice that the termn 47rTr is inde-
 pendent of the form of the surface, and that dv/dn will be the same to the first
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 order of small quantities for a slightly deformed sphere as for the sphere

 itself.

 We have now to apply these results to our problem.

 The position of a point in the region R may be defined by the distance meas-

 ured inwards from the sphere S along one of the radii orthogonal to S. The

 surface of the spheroid as defined in this way is given by c, a function of 0 and

 + . Any point on a radius may then be defiled by sE, where s is a proper frac-

 tion. If s is the same at every point the surface s is a deformed sphere; s = 1

 gives the spheroid and s = 0 the sphere S.

 If do- is an element of area of X, the corresponding element on the surface s

 will be (1 - XEs) do. The value of X will be determined hereafter, and it is

 only necessary to remark that it is positive because the areas must decrease as

 we travel inwards.

 Let s and s + ds be two adjacent surfaces; then the mass of negative density
 enclosed between them in the tube of which

 (1 -XEs)d- and [ 1-XE(s + ds)]do-

 are the ends is -E (1 -XES ) do- ds. If this element of mass be regarded as

 surface density on s, that surface density is clearly - pE ds. If the same ele-
 ment of mass were carried along the orthogonal tube and deposited as surface

 density on S that surface density would be - pE(1 - Xes). The sum for all

 values of s of all such transportals would constitute the condensation - C

 already considered.

 The double system D consists of the volume density - p in R, and the posi-

 tive condensation + C on X, the total mass beinig zero.

 Let z, a proper fraction, define a surface between the sphere S and the

 spheroid. Consider one of the orthogolnal lines, and let VK be the potential of
 D at the point P where the line leaves S and V the potential at the point Q

 where it cuts z. Then I require to find V - V.

 Since s denotes a surface intermediate between S and the spheroid,

 ds d ( VO - 17i)/ds is the excess of the potenitial at P above that at Q of surface
 density - pE ds on s and surface density + pE (1 - XEs ) ds on S. Such a sys-
 tem is a double layer, but there is a finite distalnce between the two surfaces,

 and the form of d( V1 - V)/ds will clearly be different according as z is
 greater or less than s.

 The arc Es may be equally divided by a large number of surfaces, and we may

 take t to define any oiie of them. Now we may clothe each intermediate sur-

 face t with equal and opposite surface densities i pE [ 1 - XE ( s -t)] tdt.
 The density

 + pE [1 - XE(s -t)] Ct on t,
 together with
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 - pE[1 - xE(s - t- dt)] dt on t + dt,

 constitutes an infinitesimal double layer; anid since the positive density on each

 t surface may be coupled with the negative density on the next interior surface,
 the finite double layer mnay be built up from a number of infinitesimal double

 layers. Hence dt dt d2( VO - K) /ds dt is the excess of the potential at P above
 that at Q of an infinitesimal double layer of thickness Edt, and with surface
 density pe [ 1 - XE ( s -t)] dt on its exterior surface.

 We may now apply the result vo - ,- dv/dn 47r8T or 0, according as
 does or does not cut the double layer, and it is clear that

 Vd VO V ez =re, = 4rrpe' [1 -Xe(s -t)] or 0,

 according as z is greater or less than t.

 In the next place, we must initegrate this from t = s to t = 0, and the result
 will have two forms.

 First, suppose z > s; then for all the values of t, z > t, and the first alter-
 native holds good. Therefore

 d4T(K - V - - E ) = 4wrpE2[s - 'Xes2]e

 Secondly, suppose z < s; then from t s to t = z, z < t and the second
 alternative holds, while from t = z to t - 0 z > t and the first holds. There-
 fore

 d d V,V V47rpE= [ z -E (-sz-21 2)
 ds O -VK- CZ -dn- 2

 We have lnow to integrate again from s = 1 to s= 0.

 From s = 1 to s = z, z < s and the second formi is applicable; from s = z to
 s = 0, z s and the first form applies.

 Therefore

 d V 012 S 1__ 8 V - 'EZ - 4,rrp4rpef[elXs2 F- V-ez dV- =4 rrpe2I [= -Xe ( sz- - z2 ) ] ds + 47rpe2 ds

 = 47rpE2{(1 z) _ XE [ Z(1 _ Z2) -z2(1- Z)]

 + IZ2 - 1Xz3 }
 2rpe2 { 2z 2 - XE ( Z - Z2 + 3)Z}

 Finally, we have to multiply - I ( K - K) by an element of negative mass
 at the point defined by z and integrate throughout R. The physical meaning

 of this integral will be considered subsequently.
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 We have already seen that such an element of mass is given by

 - pdv = - pE(1 - XEz)dc-dz

 and the limits of integration are z = 1 to z = 0.

 Therefore

 ( _- )p = =7rp2 jEf3(1 - Xz) {2z - Z2 _ XE ( - Z2 + z3) }dz do

 + pJ 62(1 - XEZ) dn dz d.

 In this expression we neglect terms of the order E5 and note that E3 z2 d V/dn

 is of that order.

 Thus

 i -V)pdv = 7rp2fJe3[2z- _ XE(Z + Z2_ 2 .z)] dzdo

 + 2 JE2Zd dz da (z 1 to o),

 _W7p2fE3(1 -XE)d?+ JlpE dV-

 the integrals being taken all over the surface of the sphere.

 We must now consider the meaning of the integral

 21 ( Vo z K) pctv.

 Let P be a point on S and Q a point on X on the same orthogonal

 linie.

 Let - U be the potential at Q of the density - p throughout R, and -U

 its value at P.

 Let 8 be the surface density of the positive concentrationi on X, IV its poten-

 tial at Q, and Wo its value at P.
 The lost energy of the double system consisting of p throughout R1, and 8

 on S is

 2 f Updv + ? W WO 8da- - f UO 8da - T fVpdv.

 This is equal to

 (U Y IV)pdv- I U-O- T10) 8da.
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 Consider the triple integral

 fff(uU. - W.)pdv

 Here dv = E ( - XEs) d ds, U,, - WO is not a function of s, aind the limits of
 s are 1 to zero. Therefore

 fff'J(U U-W V) pdv= (UOf-WO) [ * e - Xes ) pdsl do-.
 But

 fE(1 - XEs)pds

 is equal to 8 the surface density of concentration. Therefore

 f f U, - U W, ] 8do- = ff (U. - U WO)pdv-

 We may now revert to the Gaussian notation with single integral sign, and

 we see that the lost energy of the system is

 2f[(WO-U.) - (WI U)]pdv.

 But W - U is the potential of the dotib]e system at Q, and is therefore V;
 and WO - UO is the potential of the double system at P, and is therefore VO.

 Accordingly the lost energy

 ~~~~~~~~~~~ do.~~~~~~~~~~~~~~~~~~~~~~~~~~(I_ IX4 o pC JDD = (V-,)pdv = 27rpl ( ,-e3 )d i dn do

 ? 5. The energy 'DD.

 The element of surface of the sphere was written do- in ? 4, but in order to

 accord with the notation used elsewhere we must nlow write it a2do-.
 The first term in -DD was

 2wrp2f( C3 - XE4 ) do-

 and when the notation for the element of surface is changed we may write it

 2 XP ( 3 _ E4 ) dI.
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 In this expression e is the length measured along a radius from the sphere S

 to the spheroid. We have denoted the outward normal by n, and therefore to
 the second order of small quantities,

 - dmn= - dr= a(l + 2r)dr.

 The distance measured inward from the sphere to the point defined by T in

 the region R is, to the first order of small quantities, - n = ar. Again

 E= fdt = af(1 + 2T)dT

 (10)
 - a [eS2+ fS4 + EfiS' - e(S2)].

 Since -n is what was denoted es in the general investigation of ? 4, we have

 dv= - a2(1 + Xn)dndo-

 = a3(1 - Xar)(1 + 2T)dTda

 =a3 [1 + (2 - Xa) T]dTrda.

 But since dv = a3dTdo-, we have X = 2/a.
 Therefore

 63 =- a3[e3(S2)3 +3e2f(2)2S4 + 3e2f(S2)2S - 3e4(S2)4],

 XE4 = 2a3e4( 2 )4.

 Whence

 E3 _ XE4 - a3 [e3( 82)3 +3e2f( 2)2 4 +3Ze2f se(S2)2S- e4( S2)4].

 This must be multiplied by -pMl/a and integrated throughout angular space.
 Then since, as before, we may omit the term in e4, this contribution to the
 energy becomes

 (11) M [ 2le3fi)a 2 2 -2 4
 The second term

 p fE2 ;dn d

 in 1DD remains for consideration. It will clearly be a term in e4 and as such 2

 might be omitted, but it is of some interest to see how it may be computed, and
 I therefore proceed.

 In order to evaluate d V/dn it suffices to imagine the volume density - p in
 the region R concentrated on a surface bisecting the space between S and the
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 128 G. H. DARWIN: THE APPROXIMATE DETERMINATION OF [April

 spheroid. We may then treat the system D as an infinitesimal double layer of
 thickness 1E and with density + C or - pa ( e S2 + fS4 + ,*f Ss. ) on its outer
 2

 surface. In the preselnt instance it suffices to consider only the leading terms
 in the density and thickness. Helnce by (10) the product denoted r8 in the
 general investigation becomes

 (- 1aeS2)(- paeS2) = pa2e2 + W 82 +:41S

 We thus have r8 expanded in surface harmonics.
 Now consider two functions

 ai-i
 Kc E Aij:A 1 Ss' for space external to S,

 V, - ZAi(i +i12)r S, for internal space.

 They are solid harmonics and as such satisfy LAPLACE'S equation throughout
 space. Hence they are the external and internal potentials of a distribution of
 matter oln X, but since they are not continuous, while their differentials are
 continuous, that matter constitutes a double layer.

 At the surface r = a,

 A.
 Vc Vi ~(2i + 1) Si

 But this must be equal to 47r-8. Hence

 2 . co 82 co AO 5A 2 9A 27ipa2eJiP2S0 +02 + 4 a o + a2 2 a

 Therefore

 31ae2. 2. 1 (09 2 (A)'0 A0=-iJae2?3cP2; A24 1=f3ae2 5 e A4 -Ufae2 l
 Now

 (dV d V diV. dV dt _ dK (r=a).
 dt clr dr

 - Zi(i?l1)_St$

 -Me4ww
 3- Me? [) 6- 22 + 2A (0 4 S ]

 Then since

 = zz2 ( 282 )2 = 2 e; + S4
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 1903] THE FORM OF MACLAUJRIN S SPHEROID 129

 we have (on writing a2do- for the do- of the general investigation of ? 4)

 pa e2d -V-do- 9=- _3 e4 2 ) 2 + 2- 0 4 ) S)? do (12 (9f L~4 82)?9 4, 4)

 (12)

 =_g AI 4 -6 0s2) + 04)]

 This term involves e4, and may be omitted, but, as stated above, it seemed

 worth while to show how it may be computed.

 Then adding (11) to (9) and omitting (12), we have for the whole gravitational

 lost energy

 1 2 4 3 2 1 f2 )208~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i+1 2) (13) -2a [-e24)2 + 16CW2 + 1 5fe2t f4 - 204) 2' +1

 ? 6. Moment of inertia.

 Since 02 iS of order e, the moment of inertia must be determined to the cubes
 of small quantities.

 We have, to the square of ,

 x2+ ?y2= r sin2 0 = (? 23+ 82)(1- 2T-2). 4wrpa

 The region R is to be considered as filled with density + p, and the element

 of mass is 3MJIdTrdo-/4 7r .

 Hence the nioment of inertia of the region R is

 Cr = (3f)2yf- (2 + 82) (1 - 2T- )dTd-

 =-( (.)7.. ff[ + 82] [e82 +fS4 + Ef' 8 ? +2( 82)
 + 2ef 8284 + 2 E ef s 82 8S.- Je3 ( 82 )3] dr do-.

 The term in e3 may be omitted for the reason assigned above, and we have

 Ur=_ - #i)+jf[c(S 2)2+ e2(S2)3 2e2f(82)2 S4

 + 2Lef( S2)2St + 2e2(S2)2] da

 = 3 [J ( e + 2e2e) 02 + e2 +. f 2efio].

 The moment of inertia of 8 is 5AlIa2. Therefore

 C 3m"1 ( 2
 47ApMt

 Trans. Am. Math. Soc. 9
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 Then C =[C--C,(=?4 [2 + ( e + 2e2)02+ e2C2 + 2efw,]. 8~C r477pa
 Whence

 (14) co 2=4 [ (5 + e+e2>02 + 2eo2 + 3efa4IL

 ? 7. Solution qf the problem.

 From (13) and (14) we have

 * -w2+2+215e 2 3 + 2 fz_1 f22E a - 0242+15e o2 + 1 5 fCO4 - 04 i-i
 2112~~~~~~~~~~~o

 + 4wp [ + (Qe + e2) 2 + -e2o2 + 3efco4].

 The conditions for a figure of equilibriumn are

 dE d-E dE

 de cf ? d-f 0
 with ,o2 constant.

 The last of these gives at oncef l= 0, and the two others give

 -5ec02 + 4e2 2 + 21-6efao4 + 4rp [( + 2e>02 + 3ec2 + 3fo4] = 0,

 (15)
 1e2Co -2f + - 3eco = 0.

 lf - 4_ 23 0+4 + 47rp *e4_

 From the former of these as a first approximation

 Co2

 47rp L5

 The second equation then gives

 2 -1 e2Co4 + te2C4 = ee2a4.

 Therefore

 (16) f 5e2 e)4 -

 We see that f is of order e2, as was assumed to be the case. Now it is of
 no use to retain terms in e3 in the first of (15), because we have neglected the
 term in e' in E. Thus the first of (15) reduces to

 -5 0eJ2 + e23 + -p 2e)02 + 3ej2] = 0.
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 Whence o[1 ? e? 2e1=2 =4e(1-2e 2);

 or

 4-= - 4 e (1-4e- 4e- 42 )=-e [I 1- e + lie ],
 (17)

 It follows from (16) and (17) that the equation to the surface of equilibrium is

 r3= a3 [1 + 3eS2+i!e2S4],
 (18)

 co)2

 and - 8 e( - 4e).

 It remains to verify that the solution (18) is correct.
 The equation to an ellipsoid of revolution, whose equatorial and polar radii

 are a and a,(1 - e1 ), is
 a2 r2 = alI

 Cos 260 i
 (1 _ e )2 + sin 9

 If we determine r3 by developing this expression as far as e2, it appears that
 the equation to the ellipsoid may be written in the form

 r =al ( el ) [ 1 + 3 (e, + 42)2+ t- 4].

 Since the volume of this ellipsoid is 47ra3(1 - el) and that of our spheroid of
 equilibrium was 47ra3 it follows that

 aS = a31-el).
 If then we write

 e el + -1? elX e2 I IX

 the equation to the ellipsoid of revolution becomes

 r3 - a3 [ 1 + 3eS2 + Ir-e2 S],

 and this is the form determined above in (18).
 If the eccentricity of the ellipsoid be denoted by sin ry, we have

 cos2y ( 1-el)2 ( -e + 6e2)2 = 1 - 2e + 1 2e2
 Therefore

 Cos y = 1-e + 165e2,

 sin2 y = 2e(1 -e)
 whence
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 132 G. H. DARWIN: THE APPROXIMATE DETERMINATION OF [April

 cos y sin2 y= 2e (1 -13-e),

 cos y sin4 y= 4e2.

 Now it is known that the rigorous solution for the angular velocity of MAC-

 LAURIN's ellipsoid may be written in the form

 CO2 (2n- 1)! sin 2y
 47rp C 1(2n+ 1)(2n +3) [(n- 1)!]2223

 Taking the first two terms

 2

 _ 2s Si2 4, COS y 3 in o __ _ - 2 sin2r o i

 =2e(1 - 4e).

 This agrees with the second of (18), and the solution is found to be correct

 as far as squares of small quantities.

 The approximate solution found above is insufficient to enable us to discuss

 the stability of the Maclaurin figure, but it may be well to indicate how a more

 accurate approximate solution would give the required result.

 Let us suppose that V is the gravitational lost energy corresponding to the

 equilibrium ellipticities e, f, f/ anid the angular velocity co.
 Then we are to regard V alnd the moment of inertia C as functions of

 e, f, f sosO that e, f, f8 are the solutions of the equations

 av ac ar 2__ ar 2ac/
 (19) e+ ?2& = ? c 2 -C O =? -- + l2 ) = .

 Now suppose that the ellipticities corresponding to any neighboring form are

 e + Be, f ? 8f, Jf8 + anld that V + 8 V, C + 8 C are the corresponding
 values of V and C. Conceive also that these variations fromn the equilibrium

 figure are made suibject to constancy of the angular momnentunm, then it is clear

 that U, the sum of the potential and kinetic energies, is given by

 U - (V+ 8 V) + 1 - .

 If we omit constant terms and only retain squares of small quantities we have

 t-=_ 8yV l)28)C + 2 (8C 2

 For the sake of brevity I will only retain the two ellipticities e, f, since this

 will suffice to indicate the general law. Now if V and C be expanded by
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 1903] THE FORM OF MACLAURIN' S SPHEROID 133

 TAYLOR'S theorem in powers of 8e, 3f, and if we bear in mind the conditions

 (19) for the figure of equilibrium, it is easy to how that

 8 V+ 1(2 C 2 T= 1 - +1o 2C )(e)2 + --f+2,2 C f)z

 A)28C _ _&_ +1 &, __ ~+22 C 8+e,2C)8f )

 1C} 22 2C (e C C) ( e) eof + C(o C )( af

 Hence

 U~~~~~~~~~~~ =- a{ Te2 + 19 [0 2e2 C 2 2] e) __ F a2c 2 / ~ ~ 2 a2 2\21

 =~ ~~X -c 2_ [_ (3 Ce +e -@y ]e8 + B t

 This is a quadratic function of Be, . f and the vanishing of the Hessian would

 give the condition for the change fromn stability to inst,ability. However, we
 need just one term more than that found above to obtain even a first approxi-

 mation to the limit of the stability of the Maclaurin spheroid. It is accord-

 ingly useless to pursue the topic further.

 CAMBRIDGE, ENGLAND.
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