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I n tro ductio n .

By  aid of the methods of a paper on “ Ellipsoidal Harmonic Analysis ” (‘ Phil. Trans., 
A, vol. 197, pp. 461-557), I here resume the subject of a previous paper (‘ Phil. Trans.,’ 
A, vol. 198, pp. 301-331). These papers will be referred to hereafter by the abridged 
titles of “ Harmonics” and “ The Pear-shaped Figure.”

At the end of the latter of these it was stated that the stability of the figure could 
not he proved definitely without approximation of a higher order of accuracy. After 
some correspondence with M. P oincare  during the course of my work, I  made an 
attempt to carry out this further approximation, but found that the expression 
for a certain portion of the energy entirely foiled me. Meanwhile he had turned his 
attention to the subject, and he has shown (‘Phil. Trans.,’ A, vol. 198, pp. 333-373) 
by a method of the greatest ingenuity and skill how the problem may be solved. He 
has not, however, pursued the arduous task of converting his analytical results into 
numbers, so that he left the question as to the stability of the pear still unanswered.

M. P oincare was so kind as to allow me to detain his manuscript on its way to the 
Royal Society lor two or three days, and I devoted that time almost entirely to 
understanding the method of his attack on the key of the position—namely, the 
method of double layers, expounded in my own language in § 9 below. Being thus 
furnished with the means, I was able to resume my attem pt under favourable 
conditions, and this paper is the result.

The substance of the analysis of this paper is, of course, essentially the same as his, 
but the arrangement and notation are so different that the two present but little 
superficial resemblance. This difference arises partly from the fact that I desired to 
use my own notation for the ellipsoidal harmonics, and partly because during the time 
that I was working at the analysis his paper was still imprinted and therefore 
inaccessible to me. But it is, perhaps, well that the two investigations of so 
complicated a subject should be nearly independent of one another.

It is rather unfortunate that I did not feel myself sufficiently expert in the use of 
the methods of W eierstrass  and S ch w arz  to evaluate the elliptic integrals after the 
methods suggested by M. P oincare , but every exertion has been taken to insure 
correctness in the arithmetical results, on which the proof of stability depends. My 
choice of antiquated methods of computation leaves the way open for some one else to 
verify the conclusions by wholly independent and more elegant calculations. I t is 
highly desirable that such a verification should be made.

As the body of this paper will hardly be studied by any one unless they should be 
actually working at the subject, I give a summary at the end. Even the mathe
matician who desires to study the subject in detail may find it advantageous to read 
the summary before looking at the analytical investigation.
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PART I.

A n a l y t ic a l  I n v e st ig a t io n .

§ 1. Method o f Procedure.

The pear-shaped figure is a deformation ot the critical Jacobian ellipsoid, and to 
the first order of small quantities it is expressed by the third zonal harmonic with 
respect to the longest axis of the ellipsoid. In the higher approximation a number 
of other harmonic terms will arise, and the coefficients of these new terms will be oi 
the second order of small quantities. The mass of an harmonic inequality vanishes 
only to the first order, and it can no longer be assumed that the centre of inertia of 
the pear coincides with the centre of the ellipsoid.

In order to define the pear, I describe an ellipsoid similar to and concentric with 
the original critical Jacobian; this new ellipsoid is taken to be sufficiently large to 
enclose the whole of the pear. I t  is clearly itself a critical Jacobian, and 1 adopt it 
as the ellipsoid of reference, and call it J. I call the region between and the 
pear R. The pear may then be defined by density +  p throughout J, and density — p 
throughout R.

If  k is the parameter which defines its axes are expressed in the notation of

Harmonics” by kv0, k {v f — l)% k ( v f  — j ^  j ; or in the notation of the “ Pear-

shaped Figure ”by hjsin ft, k cos /3/sin /3, k cos y/sin /3, where sin /3 =  sin y.
Now let S f  denote any surface harmonic, so that is the same thing as 

[Jh* (jx) or P /  (/x)] X [ C f  (</>) or C , ’ (</>)]. The third zonal harmonic deformation will 
then be eS3 or e]dr> (jx) C3 (</>), where e is of the first order of small quantities. On 
account of the symmetry of the figure, the new terms cannot involve the sine 
functions or S, and moreover, the rank s must necessarily be even.

Suppose that the new terms are expressed by %/fSf for all values of from 1 to 
infinity, and with s equal to 0, 2, 4 . . . ior — 1. Then all the s are of order e3, 
excepting f  . which is zero.

We have seen in “ Harmonics,” § II , that if denotes the perpendicular from the 
centre of the ellipsoid v0 on to the tangent plane at /x, </>, the equation to a harmonic 
deformation of the ellipsoid is

-  •Vs) =  2
LJ 0

Since this equation may be written in the lorm

v -
+ + «2

1 + § \ ^  W  i)
1 -  A

=  1 +  2 eSf,



it is clear that if 2eSf is a constant, say c, the surface defined is an ellipsoid similar 
to the surface of reference, with semi-axes augmented in the proportion of (1 +  c f  to
unity.

I now replace the variable v by a new one, namely,

r = ...........................................w

The negative sign is taken because the points to be specified will lie inside J.
Then r  =  c, a constant, defines an interior ellipsoid similar to and concentric with J. 

The equation to the pear may now be written

t  — c — eS?i —
1

Th only condition which has been imposed on c is that it shall be great enough to 
make r  always positive.

In order to solve our problem it is necessary to determine the energy lost in the 
process of concentration from a condition of infinite dispersion into the final con
figuration. This involves the use of the formula for the gravity of J , inclusive of 
rotation. I t  is well known that this formula is simple for the inside of J  and more 
complicated for the outside. Since the whole region lies inside J  there is no 
necessity in the present case to use the more complicated formula.

The final expression for the lost energy cannot involve the size of J ,  the exterior 
ellipsoid of reference, and therefore the arbitrary constant c must ultimately disappear. 
I t  is therefore legitimate to make c zero from the beginning.

I t  is clear that we might with equal justice have discussed the problem by means 
of an ellipsoid which should lie entirely inside the pear, the region between the pear 
and the ellipsoid would then have been filled with positive density, and the formula 
for external gravity would have been needed. The same argument as before would 
then have justified our putting the constant c equal to zero.

We thus arrive at the same conclusion as does M. P o inc ar e , namely, that it is 
immaterial whether the formula for external or internal gravity he used.

I now revert to my first hypothesis of the enveloping ellipsoid, but put c, equal 
to zero from the first. In order, however, to afford clearness to our conceptions, I 
shall continue to discuss the problem as though c were not zero and as though 
enclosed the whole pear. With this explanation, we may write the equation to the 
pear in the form
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§ 2. The Lost Energy o f the System.

If  the negative density in R  is transported along tubes formed by a family ot 
orthogonal curves and deposited as surface density on J . we. may refer to such a
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condensation as — C.I do not suppose the condensation actually effected, but 
imagine the surface of J  to be coated with equal and opposite condensations +  C 
and — C.

The system of masses forming the pear may then be considered as being as 
follows:—

Density +  p throughout J , say -f- J.
Negative condensation on •/, say — C.
Positive condensation +  C on J  and negative volume density — p throughout 

This last forms a double system of zero mass, say D, and =
Let Vj, V, be the potentials of +  J  and -f- R, and Vj_r the potential of the pear.

An element of volume being written do, let j dv, dv, do denote integrations
%' j  Jr J j —r

throughout J, R  and the pear respectively.
Let d be the distance along the z axis from the centre of the ellipsoid as origin to 

the centre of inertia of the p ear; let co be the angular velocity of the critical 
Jacobian about the axis x, so that co2/2irp =  T4200; and let oj3 -(- Sod be the square 
of the angular velocity of the pear. Lastly, let M  be the mass of the pear.

Then the lost energy E  is given by

E  =  if Vj.rpdv +  i  (»“- +  S&r) f [ /  +  (2 -  < ()s ]
J j - r  J j - r

Now f zpdv — Md, so that f (— 2 =  —
J j - r  *j—t

Again, since

Vj-r =  V  -  V„ f =  f.  -  f  . f.  V,pdv =  f  Vjpdv,
Jj —r J j  Jr J t Jr

we have
L I Vj_rpdv =  |  j  Vjpdv — |  Vjpdv +  j

Also

^ (o>3 +  8w3) |  [y3 +  (z — oi)3] pdv =  4<w31 (y3 +  pdv — j  ( 3 +  %*) pdv

J- iSw3 [ (y3 +  pdv — |  (&>3 +  So
J j - r

Hence

E  = h f [  Vj  +  CO* (7/ +  z*)] pdv -  [  [ Vj +  (y* +  z*)] pdv +  Vrpdv

+  TSo>3 f (y3 +  pdv — i  (&»3 +  Sw3) Md2,
J j - r

As the several terms* will be considered separately, it will be convenient to have an



abridged notation to specify them. I may denote the lost energy of J , inclusive of 
rotation, by \JJ; the mutual lost energy of J  and of the region considered as 
filled with positive density, by J R ; the lost energy of the region R by IR E .

The moment of inertia of the pear is A ,and it is equal to Aj — A,, the moment of 
inertia of J  less that of E.
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If  hDD  denotes the lost energy of the double system described above, we clearly 
have

E  = \ J J  -  J R + C R -  \C G  +  ±DD  +  t (A,- -  A r) So.2 -  . . (3).

The parameter /3 of “ Harmonics ” is connected with k  of the “ Pear-shaped Figure ! 
by the equations

Then

and

where
E  =  \ J J  -  J R  +  %RR +  |  (Aj-  A r) 3 - i ( c o 2 +  M  

J R  — f [F # +  ^ W  +  z ^ p d v ,
J r

Aj =  [ (y~ +  z2) pdv, A,. =  ( f  +  pdv,

\R R  =  f Vrpdv.
r

\R R  — \  (C — R) (C — R) A- CR — ±CC =  \D D  +  CR -  \CC.

We require to evaluate E  to the fourth order; now d is at least of the second 
order and d2 of the fourth order; hence . Sod is at least of the fifth order and 
negligible.

Hence, finally, to the required degree of approximation

I t  will appear below that d is not even of the second order, so that the last term 
will, in fact, entirely disappear, although we cannot see at the present stage that this 
will be so.

§ 3. Expression fo r  the Element o f Volume.

■l -t- p  ' - 1 +  k*r +  k*• r — p  i  +

There will, I think, be no confusion if I also use A i11 a second sense, defining it by 
the equations

sin A — Ksin y, cos3 /3 =  1 — sin2 y.
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I t  has already been remarked above tha t the squares of the semi-axes of J  are

&2v03 = sin3 /3 ’
I? cos2 
sin^/3 * P  (v 2 - 1 + 6

1  -  0.

k3 cos3 7 
sin3 /3 *

The mass of J  is then inpkz 7 .
r  sm3 /3

I now take the mass M  of the pear to be

Thus kQ is a constant which specifies the volume of liquid in the pear, and the mass
of J  is M  (k/k0f .

I t  will be convenient to introduce certain new symbols, namely,

A3 =  1 — /c2 sin2 8, T2 =  1 — k'3 cos3 (f>,

Ax3 — I — k3 sin3 y  sin2 6, F p  — cos3 y +  k '2 sin2 y  cos2 </>,

where sin 6 is the p, of “ Harmonics.”
The roots of the fundamental cubic were and -— and in the new

notation they are v~, sin3 0, -—

s !n c e  ”•* =
we now have 

Ax22 _  2 _  _~L_
0 ^  sin2 ’ vo ~

1 — 0  cos 2(f>_ Tj2
1 - /3 sin2 ‘

The expression for p 0, the perpendicular from the centre on to the tangent plane 
at 0, (f>, is given in (49) of “ Harmonics,” namely,

VJ
IV

v<? W  -  H (V  - 0) cos3 ft cos3 7 1

Oo2 -  J )  I V  -
1 — /3cos 2(f) 

1 - / 8 .

sin2 /3 Aj2 Tj2 ‘ ’ * (4).

Also by (50) of “ Harmonics ” the element of surface of the ellipsoid is given by

cos 2(p
Vo dcr 
dO d(f) =  k \ W -()'(•><? ~ \ + l )'

1 - /3 -  J
1 - / 3/  / l  -  0  cos 2</>y / 1_ + _  o 

1 - 0  1 - 0
Passing to the new notation this may be written

p0 da- _ 3 M/ k\s 1 — /c2 sin2 0 — J  cos2 <]E> _ 3 /  k \ 3 A,2r ,2_ / 1 __1_
d(j) ~  4tr/> \A0/  A r _  47T/3 \  &„/ ’ AT sin2 7 \ r x2 Ax2

VOL. CC.— A. 2 L
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The new independent variable r  is to replace v ; it was defined in (l) by

T =  w  -  O .

and in accordance with (2) the equation to the surface of the pear is

t  = —  eS3 — 1

From (4)
2 2 "Po" t /
' = v ‘ ~ l f 7 =  ^  ~

2t cos2 5 cos2 7 \
..y*2' =  0̂ 

For brevity I now write

2 t cos2 /3 cos2 7 ,, ,
D = ----- -------------  * S0 th a t

V2 =  —U  (1 -  Tj), J/2 -  1 =  (1 -  T, sec2 /3), V2 -  1 ^ 1  =  (1 -  TX sec2 y),sin2 /? /? sin2 /3

9 2 / 1 Ti
^ 8  i 1 “  V / ’

2 1 — ft COS 2<fr _ r ,2 /  _Ti \
1 -  /3 “  sin2 1, “  i y /

1 — y3 cos 2<£ 2 _1 — /c2 sin2 0 — k'2 cos2 <£__ A12ri2 / I  1 \
1 — y3 ^  k~ sin2 y3 \ r i 2 Aj2/

Therefore

(r2- 1

’ v - v i ' - i - z i f r

A12r 12
_D 1 - T1

Fp
sin /3 cos /3 cos 7 (1 — Tj)* (1 — tx sec2 /3f  (1 — tx sec2 7)"

If  we write

G =  I  (1 +  sec2 /3 -f sec2 y)

17 =  |  (1 +  sec4' /5 +  sec4 y) +  i  (sec2 yS +  sec2 y +  sec2 yS sec2 y), 

this expression, when expanded as far as t,2, becomes

Ai2r i!_ 
sin yS cos y3 cos 7 1 n 2 Aj2r j2

1 -f — 
Ax2 T  Fj2

— I I

The arcs of the three orthogonal curves were denoted in “ Harmonics,”
where dn was the outward normal. Since in the present case we are measuring r 
inwards, the element of volume dv must be taken as — dn df.

The equations (50) of “ Harmonics ” give
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— cos 0 v dv d0 dcf>
=  F

(v“ — p?) ( —1 — /3 cos 2 <f)\/I — y3 cos 2<j)
1 - / 3 1 - / 3 ~  F

v (ir — l )5 ( v~ 1 + /3\a «/l + /3
— f i ) ^ { r z r p -  r  \

h /I  — /3cos 2(f>\h *
1 - / 3  y1

But
7 cos3 /3 cos3 7 cZt t p— v dv — -----— — . t ., and thereforesin3 /3 * A ̂ 2 ’

cos/3 cos 7 A^l^ 3 / I  ' 1 
’ * sin3 /3 sin2 7  AT \ jV  “  A,'dr d6 d</) 1 -  T‘ ( i ?  +  i^- -

1 /1
\ ApFp "*■ ^  ( a x2 +  rp 7  7 / j_

Ou comparing this with the expression for we see that

dv ,
-F = p Qd(r 1 “  Ti f a 2 +  Fi — d )  —  Ti2 ( — r +  &fxi +  ini') — I IAp 1 IV Aprp \ V  1 17

(5).

Another form, which will he more generally useful, is found by substituting for r : 
its value; it is

3 M / * y  r A,2 -  Fp _  cos2 ft cos2 7
c/r c/0 d(f> iirp \k { sin2 7

— 4r3 cos4 ft cos4 7 f
sin2 7 L \ r i6Ap rp A f +  G

sin2 7 

1

1 _  J _
rp  “  Ap
1

1 1 '

FpAp FpAf - I I

1?  Aft,

1
rpAft rpAp,

1 1 
J AF

I11 order to express this more succinctly let

7T A r sin3 7 9

^  _ 6 cos3 ft cos3 7
7r sin3 7

_ 6 cos4 /3 cos4 7
7r sin3 7

' 1 J_ 
JY ~  Ai4 

1

s (  r,> ~  a ,VJ
_i_
AF ’

1 \
rpAp rpAft, 

1

+  <? FftAft rftAft

1
rftAft FftAft/_

1
AF

( 6)

We note that
p0J *  M / k _\» _

C/0 d(}> 8 ye \ * 0/  ’

IF =  COS2 ft COS3 y  ( iTJ 4"rp 1 Ap A p r x3 •
Then

c/ o _  , M /k y
dr d0 d<f>~ 8 U 0

[cl> ~  2UF -  4 r2G]

2 L 2

( 6).

(G).



The surface r =  constant is an ellipsoid similar to J  with squares of semi-axes 
reduced in the proportion 1 — 2r to unity. Therefore the volume enclosed between 
the two ellipsoids is
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f *  =  ? ( £ ) ’ [1 - (l -  * ■ » = f  ( £ )  [3t -  * *  ~

But taking the limits of 6 and </> as tto 0, so tha t we integrate through one 
octant and multiply the result by 8, we have another expression for the same thing, 
namely, .

fob’ =  jj  [<f>T ~ ■ 4Et2 — |D r3] (16 d f .

Therefore equating coefficients of powers of r in the two expressions,

jj<t> d$ d(j> =  3, jj'P  dd d(f) — -f, dd d(p ■=3
8 (7).

The first of these will be of use hereafter, and all three afford formulae of verification 
in the numerical work.

§ 4. Determination o f 1c;Definition o f  Symbols fo r  Integrals.

The pear being defined by t =  — eS3 — f t w i t h  all the s of order e3, 

excepting f  which is zero, we have at the surface of the pear to the fourth order

T* =  e3 (S3)3 +  2 t e f i ^ S  +

T* = - e* (S ,y  -  S t e f s  ( S t f S f ,

r

In all the integrations which follow, and especially in the present instance in the 
determination of the volume of the region D, it is important to note that <P, T, II are 
even functions of the angular co-ordinates, and that therefore the integral of any odd 
function of those co-ordinates multiplied by any of these functions will vanish. 
When the odd functions are omitted we may integrate throughout the octant defined 
by the limits -|-7r to 0 for 0 and </>, and multiply the result by 8.

Then, only retaining terms as far as e3, we may in finding the volume R  take

r  =  — tfi'S?,i only even, 

r3 =  e3 (S .f1 +  2te2f sS :f f ,  i only odd,

T3 =  0.

To the cubes of small quantities we have, therefore,



r M  /  k \ 3 f f
j *  =  7  \ k  )I ! [ _  ^  w  +  2Ses/ ‘-s3s.')] cie

ihe first term vanishes because >S/ is a surface harmonic and is proportional
to ptflcr.

Thus we are left with
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f  *  =  -  j(jrJ  f f  *  l > 2  W  +  2 W 1  # •
I now introduce symbols for certain integrals, and in order to bring all the 

definitions together I also define several others which will only occur later.
Let

(f>is =  | |  <f? (Sfd(f> 

(of =  | |  Mr (SsyS is dd d(f> .............................. ( 8).

cos2 /3 cos2 7 
sin/3

All these integrals vanish unless i is even. For immediate use I also introduce

xpis =  | |  'P/S3/Sis dd d(f>.

The Q/ integrals vanish unless i is odd, but it will appear later that they are not 
actually required.

I further write

= \ [ v  (S3y  dd d<f>, f f a  (S3y  dd

or a =  —
6 cos3 /3 cos3 7 sin /3

sin2 7 f f j v V i y  A^r,2)  ;jG ( a t̂ ,* \ ^ l _ ddd(f>
( 8).

W ith this notation we have at once to cubes of small quantities,

k V ,f pdv =  — M f—j [eV3 +  2 te fisxpis] (9).

But before using this I wil] obtain another integral to the fourth order. I t is

f rp dv = M  ( ~ j 3 ff [e2 (Ssy  +  2 te  +  ( S / ^ ) 2]

+  i *  [>3 (S3)3 +  3 W # ' ]  -  (S ,)1} dd d<p.

Omitting terms which vanish, amongst which are integrals of the type we
have



Returning now to the determination of the mass of +  R, and observing that the 
mass of the pear is equal to that of J  — R ,we have

M= M [1 + eV3 + 2 tefrWl
Therefore

(it)3 = 1 +  e*a~+  + e4§-

A term e4S of the fourth order has been introduced, but it will appear that it is 
unnecessary to evaluate it.

There will be frequent occasion to express in terms of k j  Now

( U = 1 - 1  [eVa +  22 ef + e*8 -  fe‘ (<rs)3]. 

But this will only be needed explicitly as far as e3, and to that order

( I ; ) 5 = 1 ~  ...........................................CO.

It is, however, necessary to determine f  ( ^ j — |  (Jp j to the fourth order.

Now

i  ( £ f  =  I  { 1 -  I  [ e S  +  22e /W  +  e‘S -  f  e* (a,)3]},

t (jrj = t {1 — I [«V2 + 22 + -  | e*(o-.,)3]J.
Hence to the fourth order
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^ Tp d v  =  i M ( ~ J  +  +  . . (10).

It will be observed that the rp integrals and § have both disappeared.

5. The Energies \ J J  and J it .

R cq, />j, c, are the semi-axes of a Jacobian ellipsoid of mass and angular
velocity co, its lost energy, inclusive of rotation,

i-o-Mj2

where is the usual auxiliary function.

\v  . h 2, +  ;
1 +  a ;  “
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The equations to be satisfied by the ellipsoid afford expressions for odfq2 and aPcf 
in terms of differentials of 'SF. I f  these expressions are added together, ad may be 
eliminated, and the expression becomes

¥  +  «1
(NT
clax

In reverting to the notation adopted here, I remark that |J /, will be used to 
denote those functions when the variable is v0, and the variable will only be inserted 
explicitly when it has any other value.

In the present case M v the mass of the Jacobian ellipsoid, is M  and it was
shown in “ the Pear-shaped Figure ” that

9. 2
*  =  « . £ = -  f P . ’Q i1- ■

Hence

i J J  = A r ( r f i i » i  -  P /Q i1] ............ (12)-h 0 \ A'0 /

I t was shown in the same paper that the internal potential of the Jacobian 
inclusive of rotation, is

W i
T ,

'F +  ^

Therefore in the present case

Vj +  W  (if  +  «3) =  f  {#„®o -  |  P , 'Q ,' sin3 0  (*3 sec3 y  sec3 0  +  z3) j  .

But the equation to an inequality on the ellipsoid defined by r  is in our new notation 

sin3 /3 (ad sec3 y +  y2sec3 /3 +  z2) =  F  (1 — 2r ) ;

Mt k V
therefore

Vj + W  (f + *•) = fK \  /
{(*„«» -  P .’Q ,1) +  2r P , lQ 1'!.

Let us divide this potential into two parts, say U) U'\ of which the first is 
constant and the second a constant multiplied by t. Also let (JR )) (JR)" be the 
two corresponding portions of the energy JR.

In order to find (JR )f we have simply to multiply Uf by the mass of R  considered 
as consisting of positive density. The volume of R  is the excess of the volume of J

above that of the pear; hence the mass of R is M i i )  -  ■
Therefore

(JR )' =  | K
7A\5

_ \K
Jfe\* 1 
h »«© » -  P i'Q i1)-
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Subtracting this from \J J  as given in (12),

\ j j  -  ( j a y  =  o<&o -  P i’Q i1) 2 ' hAn 4T
But the latter factor was found in (11) as equal to (oq)2. The term ^

only contributes a constant to the whole energy and may therefore be dropped. 
Accordingly ,

\ j j  -  (, jry =  f  Mf  { -  ( f 0®o -  P i 'Q i1) • • •A0

For the other portion (.//?)" we have

Z7" =  3 ? ( ?  Y tP ^ Q A

(13).

A \hv

Then by means of (10)

1
Pi'Q i1 {e^ 3  +  2 +  * t e * f i w  ~  2e % }  . (14).

In the terms of the fourth order we may put (k/k0f  equal to unity. Therefore 
combining (13) and (14)

M‘
P i'Q iV s+ i T  P .'Q i1) W + e P i ' Q . ' U/h0

- 4 P l>Q,1S e » /W  -  W W W  ( W

§ 6. Surface Density o f Concentration C ; Energy CR.

The region i? being filled with positive volume density p, is concentrated along 
orthogonal tubes on to J , and there gives surface density 8.

To the first order, by (5),

civ
(It

p 0d(r £l -  2r
cos2 fi cos2 7 / I

ApTq2 \E f  +

Integrating with respect to r  from the pear to J , we have as far as squares of 
small quantities

8 =  ~  PoP »2 .
cos3 /3 cos3 7 — -f 1 — \ 2 1 "n 2*1 r i3
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It is now necessary to express 8 /p0in surface harmonics. The first two tenns are 
already in the required form ; for the remainder let

tra'S? =  0
+  1. .

A^ 2 \ A *  1 r x2

Multiplying both sides by S;s<t> dd d  and integrating, we have

+ A -  G)(s3ysi‘d0d<t,

—j|  V  (Say  S f  dd d<f> =

Therefore 17/  =  and vanishes unless i is even.
w,
</>0

When i =  0, rj0 =  and since by (7) 0 =  3, and j j . 'F (S.tfddd<f> =
we have — ^<r2. 

Hence we have

e $ S  +  2 +  ?  ( e* q + f* )S =  — PoP

This is expressed in surface harmonics, the middle term being of order zero. 

By (51) of “ Harmonics” the internal potential of 8 is

M  i\*
k0 \K  =  -  3 T  (T ) (-) W  S , +  ie V 2f 0ffl0 M  SI

cof

We have *,•<») =  *,• -  ^  =  ft* -  r ^  * •  But before

proceeding to use this I will introduce a new abridgment, and let

= t/a/
ĵ/0337 =  a /

(16).

Then

v , =  - 3

%

J f /  7u \*
\ *b +  Ae3cr2^0 +  S C3

cof

+  3
M  (  lc \ 3 cos2 /? cos2 7 

*o \  A0 /  T sin £

4>f

eI3:,
At2W

+  A ( ^  + 33/ Ai3I1[2

In order to find the energy CR we multiply H  by the element of mass

p dv =  (fV [‘B -  2rTQ dr dd d<f>,

and integrate throughout R.
VOL. CC.— A, 2 M
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Now

B m = - 1 C (il{* * + +  2 ( e21 +fi) *•*}
+ 1 ~ (jf)‘r + iev,a0'P + s («* * +/•) arts;

„M?(lz\ 5 cos3#  cos27 f . #3 , ^  /  2 ®is ,
+  1 — 1 — ) T  .T7W -  1 <^3 +  2  (.1̂  + /<  j AAF.2 r8 h sin /3 Ai2r ,2

Let us integrate these three lines separately. 
First integral

=  3 C ( i n f  +  i« V s3o® +  t
i f 3 .f k '

V \ *o.

i / 2 ,f ie '
V \ h ,

<? A  +  fi)W S> S; J \cSt +  SftS?} d id *

°>f; t . +  ( f i f<pf m i

Second integral

= 3  f  [r] f f  W *  +  +  s  ( « ■  %+fi)
{e2 (S3)2 +  2 tefiSd<f>

i f 3 If k '
h  '

Third integral

— AM2 f k \ 5 cos3 ft cos2 7 f f [ 
\k 0) sin/3 JJ {2 k dS

0 \  A/0 / 3 a/t # +  2 + > ? ')» •  ‘s,‘‘ V I ? .
{e3 ( S3)3 +  2 $ e f *Szdd d<j>

= i ~ ( f  T {*(<•£ + «!//) />,*»/ + ZS^awl•*b V 0̂

All the terms, excepting the first of the first integral, are of the fourth order, and 
in them we may put (k/k{))b equal to unity.

Therefore

CR i / 2 ,f k V
V V /

+  f T  { e4 Tt^o ( O 2 +  2 (2 8 > /  +  23/p/)

+  $e2f ‘ [4 (&/ +  &3) <  +  (23/ +  23S3) p/] +  22 { f t f m t }  • • • (17).
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§ 7. The Energy \C C ; Result fo r  \ J J  -  J R  +  CR -  \CC.

From the last section it appears that the potential of C a t the surface, where 
7 =  0, is

=  — 3— j (‘%3S3 +  |  2 — |  •

For the mass of an element of the surface density we have

p 0Sd<r =  -  p f  (JY* {eS3 +  +  s(e2 "j + / , • )  S;} d e d f.

These are to be multiplied together and half the product is to be integrated. 

Then bearing in mind that j j  dd d<f> =  3, we have

M fk \ 5 ['
? c c = * f L/n0 \A( < * w » + (o-s) %  +  s  m

In the terms of the fourth order we put ( )5 equal to unity ; thus

±CC-  e - m  + ¥ (^a)2 +  2 Ze2f M W + Z ( f f m t \ -

Combining this with (17)

M \ 5
CR -  \ o c  = !  ! Q J  +  iI

_,y~
■J9»( )̂3 +  2 (a .V  +  M.V)^.j

+  + ( # • * + 2* w * i + u / r a w  ■ ( i8>

!

We are in a position to collect together all the results obtained up to this point. 
Now \ J J  — J R ,  as given in (15), contains P ^ Q i1, » the latter of these is Avhat
is now written ^[0, and since the ellipsoid is critical =  1P3©3 =  'sly

Collecting terms we find that the terms of the second order disappear, and that

y j  -  J R  +  CR -  $<7(7 = <r3)a +  2 £,) +  £ (& > / + 33/p/)
(0[

+  Se2f t  [2:&>/ +  (B/ +  2333) p/] -  t  ( f t ) 2 (%  -  » /) 4>l} ■ (19).

The reader will recognise that the last term involves the coefficient of stability for 
the deformation S t  I t  is important to note that if S t  is of odd order there is no 
term with coefficient e f t

2 M 2
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§ 8. The Term -  fMcPoT.

In  the Jacobian ellipsoid

fr 2 i c 2
1 + 1 ^  =  ^  +  1^3 M1

d9
daj

In the present notation this is

i -v  / i  + eo„> a  =  * ( ? A  _  |P ilQ il)  =  2 (a  -  f a ) -
3 i f  V sin2 #  ;

Hence
-  i  M d V  =  - 1 (Mdfi=-  ( a  -  W e ) <J/,<)S1 +  cos2#

I now make the following definition
=  sin (1 — cos2 <£)*,

so that 
Then

2 =  kS v

Md zpdv — \ zpdv  — zp dv =  — \ zp dv
J j - r  J ;• J/- Jr

=  — M  ( ~ J k f j]  [<h -  2DP] dr dd

= M  (~Jkjf  [<t> (e$3 +  $ f i sS +  'Pe3 (S3)2] dd

=  M i ^ k f y

Therefore to the required order

i w  =  - - — ^ ( a  -  l a x / i ^ r  •/n0 1 +  COS3 /?
( 20 ).

We again note that this term in the energy does not introduce any term with a 
coefficient e~fY. Hence thus far the whole energy for harmonic deformations of odd 
order is of the form Le4 +  M ( f t ) 2.

§ 9. Double .

I t remains to determine the value of \D D  in the energy, and for this purpose we 
must consider double layers, according to the ingenious method devised hy 
M. P oincare .

Let a closed surface S  he intersected at every point by a member of a family of



curves, and let a be the angle between the curve and the outward normal a t any 
point. At every point of S  measure along the curve an infinitesimal arc t, and let r 
be a function of the two co-ordinates which determine position on S. The extremities 
of these arcs define a second surface S ', and every element of area of S  has its 
corresponding element da  on S'. Suppose that S  is coated with surface density 8, and 
that S ' is coated with surface density — S', where 8 da  =  S' da'. The system S S ' 
may then he called a double layer, and its total mass is zero. We are to discuss the 
potential of such a system.

Let U (-L) and U ( —) be the external and internal potentials of density 8 on S, 
and U0their common value at a point P  of S. At P  take a system of rectangular 
axes, n being along the outward normal, and s and t mutually a t right angles in the 
tangent plane.

In the neighbourhood of P  ■

U ( + ) = U 0 + n d£ ( + )  +  SdV (+ )  +  t d£  ( + ) . . .

F < - ) = v 0  +  t l f ( - )  +  s f ( - )  +  * f  ( - ) • • •
In the first of these nis necessarily positive, in the second negative.

Now ( +  ) =  -j- (—) =  -y  ; and the like holds for the differentials with respect
to t.

Also by P oisson’s equation

£ ( - > - £ ( + >  = * * ■

Let P P ' be one of the family of curves whereby the double layer is defined, and 
let P' lie on S \  so that P P ' is r. By the definition of a the normal elevation of S ' 
above S  is r cos a.

Let v9 v' be the potentials of the double layer at P  and at P'.
The potential of S ' at P ' differs infinitely little in magnitude, but is of the opposite 

sign from that of S  at P  ; it is therefore — U0. The point P' lies on the positive 
side of S  at a point whose co-ordinates may be taken to be

n — r cos a, s = r sin a, t — 0.
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Therefore the potential of S  at P ' is

cr» + tco s  “ £ ( + ) +
. dU

T S i l l  a  —  .as

Therefore



Again the potential of S  a t P  is U0, and since P  lies on the negative side of S ' and
has co-ordinates relatively to the n, s, t axes at given by

n =  — tcos a, s =  — t  sin a, =  0 ;
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since further the density on S ' is negative, we have

d U . N , .v — t COS a —  ( —) +  r sin a .

Therefore

V —  V — T COS a
YdU _  '

dn '  ’
=  47ttS cos

The differential with respect to n of the potential of S  falls abruptly by 47tS as we 
cross S  normally from the negative to the positive side; and the differential of the 
potential of S ' rises abruptly by the same amount as we pass on across It 
follows that dv/dnon the inside of S  is continuous with its value on the outside of 

The surface S  to which this theorem is to be applied is a slightly deformed 
ellipsoid, and the curves are the intersection of the two quadrics confocal with the 
ellipsoid which is deformed. The curves start normally to the ellipsoid, and where 
they meet S  the angle a will be proportional to the deformation whereby S  is derived 
from the ellipsoid. I t follows that cos a will only differ from unity by a term 
proportional to the square of the deformation, and as it is only necessary to retain 
terms of the order of the first power of the deformation, we may treat cos a as unity. 

We thus have the result
v — v' — 47rrS.

Suppose the curve P P ' produced both ways, and that Afc, T/i are two points on it 
either both on the same side or on opposite sides of the double layer.

Let M(iM 1 be equal to £, let £ be measured in the same direction as n, and let £ be 
a small quantity whose first power is to be retained in the results.

Let v{), v | be the potential of the double layer at and Mx respectively.
When £ does not cut the layer we have

,. dv

and when it does cut the layer

V0 — V1 =  47T7-S — £
dv
dn

In the application which I shall make of this result the surface S ' will actually be 
inside S .then v0 will denote the potential at any point not lying in the infinitely 
small space between S  and S',and t \  is the potential at a point more towards the 
inside of the ellipsoid by a distance £ ; S is the surface density on the external surface
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S  and t is measured inwards. I f  then we still choose to measure n outwards, as I 
shall do, our formula becomes

y dv 1 _ v0 — v1 — £ — =  4-7ttS or 0,

according as £ does or does not cut the double layer.
It may be well to remark tha t v being proportional to to, £ is small compared

with 4t7t3. I t  is also important to notice that the term 477x8 is independent of the 
form of the surface, and tha t dv/dn  will be the same to the first order of small 
quantities for a slightly deformed ellipsoid as for the ellipsoid itself.

We have now to apply these results to our problem.
The position of a point in the region R  may be defined by the distance measured 

inwards from J  along one of the curves orthogonal to J. The surface of the pear as 
defined in this way is given by e, a function of 6 and (f>. Any point on a curve may 
then be defined by se, where s is a proper fraction. I f  is the same at every point 
the surface s is a deformed ellipsoid ; s =  1 gives the pear and =  0 the ellipsoid J.

If dcr is an element of area of J , the corresponding element on the surface will be 
(1 — \es) dcr.The value of X will be determined hereafter, and it is only necessary
to remark that it is positive because the areas must decrease as we travel inwards.

Let s and s +  ds be two adjacent surfaces ; then the mass of negative density 
enclosed between them in the tube of which (1 — Xe.sj dcr and (1 — Xe (.s -j- ds)) da  
are the ends is — pe (1 — Xes) da  ds.I f  this element of mass be regarded as 
surface density on s,that surface density is clearly — pe ds. If  the same element of 
mass were carried along the orthogonal tube and deposited as surface density on 
that surface density would be — pe(1 — Xe.sj. The sum for all values of s of all such 
transportals would constitute the condensation — C already considered.

The double system D consists of the volume density — p in R, and the positive 
condensation +  Con J ,the total mass being zero.

Let z, a proper fraction, define a surface between J  and the pear. Consider one of 
the orthogonal curves, and let V0 be the potential of D  a t the point P  where the 
curve leaves J  and Vz the potential at the point Q where it cuts z. Then I require 
to find V0 — Vz.

(I
Since s denotes a surface intermediate between J  and the pear, — ( V0 — Vz) ds is

the excess of the potential at P  above that at Q of surface density — pe ds on s and 
surface density +  pe (1 — Xes) ds on J. Such a system is a double layer, but there is

a finite distance between the two surfaces, and the form of ^  (F 0 — Vg) will clearly

be different according as z is greater or less than s.
The arc es may be equally divided by a large number of surfaces, and we may take 

t to define any one of them. Now we may clothe each intermediate surface t with 
equal and opposite surface densities i  pe [1 — Xe (s — £)] dt.
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The density +  pe[1 — Xe (s — £)] dton t, together with — pe[1 — \e(s — t — dt
on t -f dt, constitute an infinitesimal double lay e r; and since the positive density on 
each t surface may be coupled with the negative density on the next interior surface, 
the finite double layer may be built up from a number of infinitesimal double layers.

Hence ( F0 — F )  dt dt is the excess of the potential a t P  above tha t at Q of an
CVS CiV

infinitesimal double layer of thickness edt, and with surface density pe [1 — Xe — £)] dt 
on its exterior surface.

(Iv .
We may now apply the result r{) — v1 — — 4 77-87- or 0, according as £ does or 

does not cut the double layer, and it is clear that
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d?
ds dt — inpe2 [1 — X e — £)] or 0,

according as zis greater or less than t.
In the next place, we must integrate this from =  to t — 0, and the result will 

have two forms.
First, suppose z >  s; then for all the values of t, z >  t, and the first alternative 

holds good. Therefore

Secondly, suppose z <  .s'; then from t =  sto =  <  and the second alternative 
holds, while from t =  z to t — 0, z> tand the first holds. Therefore

Is ( F° -  V* ~  e z =  i7TPe~ Ez “  (sz ~  a22)] •

We have now to integrate again from s — 1 to 5 =  0.
From s =  1 to s — z, z <1 s and the second form is applicable; from s =  z to .s =  0, 

z > s and the first form applies.
Therefore

T̂- eZ (jv — 47rpe3 j [ z — Xe (sz — ^ 2)] ds -j- 47rpe2 [ [5 — -̂Xes2]

=  4t rpd\z (1 -  z) -  Xe [&(1 -  7}) - (1 -  +  -  ±\ez*}

=  2npe2 {2 z — z2 — Xe (z — #  +  i^3)}.

Finally, we have to multiply — 5 ( F0 — If) by an element of negative mass at the 
point defined by z and integrate throughout R. The physical meaning of this 
integral will be considered subsequently.

We have already seen that such an element of mass is given by



— p dv =  — pe(1 — dz

and the limits of integration are z =  1 to z =  0.
Therefore

i f  (F0-r ,)P<to
J

=  tt[j~ | | e 3 (1 — Xez) (2z — z'2 — Xe (z — z2 - f  jZ 3) } dz  +  i p  [ je2z (1 — Xez) dz da .
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, d VIn this expression we neglect terms of the order e5 and note tha t e3z2- -  is ot

that order.
Thus

\  j"( F0 — I7-) pdv= vp2^ e 3 [2 z—z3—Xe(z+z3 — dzda  1 to 0),

=  I V 2 feS( l — da  + ip  fe'2 ,

the integrals being taken all over the surface of the ellipsoid.

We must now consider the meaning of the integral i  f ( Vq ~  ^~) pdv.

Let Pbe a point on J  and Q a point in R  on the same orthogonal curve.
Let — TJbe the potential at Q of the density — p throughout R, and — U0 its 

value at P.
Let S be the surface density of the positive concentration on J, its potential at 

Q, and W0 its value at P.
The lost energy of the double system consisting of — throughout It, and 8 

on J  is

^ j Up dv -(- o |  W0 8 da  — 8 da  — |  Wp dv.

This is equal to

- W ) p d v  - % \ ( l \ - W » ) 8 d a .

Consider the triple integral j' j"| ( U0 — IF0) pdv. Here =  e (1 — Xes) da d s ; also 

U0— W Q is not a function of s, and the limits of s are 1 to zero. Therefore

W0)p dv =  ] ) (U() -  W0) £e (1 -  Xes) p ds da.

But fe  (I — Xes) p ds is equal to 8 the surface density of concentration. Therefore 
Jo

j][C 0 -  1F0] 8 da =  fj]( -  P dv.
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We may now revert to the Gaussian notation with single integral sign, and 
see that the lost energy of the system is
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we

u0)- (w-uy3Pdv.
But W — Uis the potential of the double system at Q, and is therefore V, ; and

W0 — U0 is the potential of the double system at P, and is therefore V0.
Accordingly the lost energy

\D D  =  | f ( F 0 - V e)p d v

=  I V  f(e3 -  )dcr +  \p  [e2 .(21).

§ 10. Determination o f e and 

e is the arc of the orthogonal curve from J  to the pear.
The arc of outward normal is connected with and our variable r by the equation

I t  follows that

-  d n =  — — vdv
P

— Poj" ~ dr, integrated from J  to the pear.

. By (50) of “ Harmonics,” with the notation of § 3 of this paper

1 — IS COS 2 (f)\i(ir — ( v3
1 - / 3 sin /3

p v _  1)1 ( vt _  1 + COS yS cos 7 (1  — T ])i  (1  — 71 sec2 /9)s (1  — r x sec2 7)*

1 - / 9
Therefore

Po
P

1 - Ji
A12

1 _  Zi
r l s

(1 — Tj)l (1 — tx sec2 /3)* (1 — 7i sec2 7)̂   ̂ ;-’Tl (ax2 r x2

=  1 — T COS2 /S COS2 7 / 1
+  r .2 — •A12r 12 \ax2 1 r x2 

Integrating this from J  to the pear

-  Po eSs +  N fiS *  - f  | c 3 cos2 /3 cos2 7 /
A^G2 \AX2 1 r x+  Pit~ (22).

We have, moreover, by the formula before integration
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dn  =  p 0 ' cos2 /3 cos2 7 / I  , 1
1 _  T “ A.T,* +  IV “  20 dr.

Also to the order, zero — n =  p 0T.
Since — nis what was denoted in § 9 by the element of volume is 

- (1 +  h i)  dndcr ,  and this is equal to

Po [1 — V z ] 1 cos2 {3cos2 7 /  1 , 1  9 r X
! - t A.TV U v  +  f ? -  /]

Vo

da dr, 

d a  da.

But by (5) the element of volume is

T COS2 V COS2 7 / 2  2
Po 1 +  FTi — 2GAx2r x2 \ a x2 ' r x2 

Equating coefficients of r  in the two expressions we find

cos2 (3 cos2 7 / I  . 1 '
X — . . I t~ +p0Ax2r x2 \AX2 1 r x2/  • (23).

§ 11. The Energy §7r/r |  e3 (1 — Xe) d a .  

From (22) and (23) we have

e3 =  - e W  +  3 W i S t f S !  +  I  +  r x2 “  2G£) W

Xe, =  ^ v ^ A ( ^  +  J _ ) (S!) ,

So that

•*(1 -  X«) =  -  f t 3 [ « W  +  3Se^- W « *  +  e* V V  { 3 ( i  V +  1? )  “  8 } (Ss)‘-

Again from (6)

Therefore

§irp2e3 (1 — Xe) d a  =  — V  77 cos cos y sin /3
0̂ W

3 T V )3
Ax2r x2

< b ( W s
4- .^ r y

4 cos2/3 cos2 7 r 5 / l  L ! \  0/7
+  c “ A V V  P U5 +  hV

dddcf).

2 N 2



When this is integrated we may put (k/kvf  equal to unity. In the integral the
i • •> A/ 2 sin2/3 . 9 , r  i

first term vanishes, and the second term gives — in the

third term we substitute for <3? its value and have
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3 M'2cos3 /3cos3 7  sin ft 4f f 1 / J - ____ 3 _ \ J s / 1 _l jL
“  it K  sin2 y  ej]  A[2IV \ I \ 2 A / / \ * \ f *  ^  A,2

(W d<j> 
AT ’

which is equal to

1 M % 4 6 cos3 /3 cos3 7  sin /3 If [ 5 / 1__ 1 1 _  J___\\ddd<f>
sin2 7 J J  l 2 Vr/Aj2 T f b j )  d T / A /  J AF

By the definition (8) this is equal to — c4cr4. 

Hence the required term in the energy is

3 il/ 2
2

sin2 /3 
cos /3 cos 7 2e2/ > ;  — £eV4 (24).

§ 12. The Energy |  e2

It is first necessary to determine dV/dn.
Suppose that the ellipsoid J  is coated with surface density S, and that a second 

surface is drawn inside J  a t an infinitesimal distance r, and coated with negative 
surface density — S', so that the two form a double layer. Then rS being a function 
of the two angular co-ordinates on the ellipsoid may be expanded in surface 
harmonics ; suppose then that

rS =  i
0

Consider the two functions

Ve =  2 47r/i/ (r03 — l)1 ^ 02 — |  ^  j ^  (") $*>f°r exIernal space,

V{ = ................................................p /  (r) ' ,v': for internal space.
av0

Since these functions are solid harmonics, the m atter of which Ve and Vi are the 
potentials is entirely confined to the surface of the ellipsoid, and since they are not 
continuous with one another, the ellipsoid must be a double layer.

N ow ©<■ « = » < * ( - )
dv

i + /?y

and therefore
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©.' H )  K )  -® ‘‘(l'o)dvo

Hence a t the surface of the ellipsoid

dv0

y e — y> — 2 in  477tS.

But this is the law found in § 9 for the change of potential in crossing a double 
layer, and hence Ve,Vi are the external and internal potentials of the double layer

tS.

1

Since
d _ p  d

dn vdv ’

d V e dF] d V
dn dn dn

Z 4wyo 
0 k\(v — l)1 (>'o! —1 + 1 )* a m -

1 — p j dvo 'ai/0 (25).

This result will hold good to the first order of small quantities if the surface be a 
slightly deformed ellipsoid, such as was the surface defined by t in § 9.

In the elementary double layer t the density was [1 — \e  (s — dt, and 
the thickness was e dt, so that the thickness multiplied by the density was 
pe2 [l — Xe (s — £)] dt dt. Since, however, we only need this to the first order, we 
may take it as pe2 dt dt. I t  will now be convenient to change the meaning of h /  to 
some extent, and to write

co ^
e2 =  2

0

Thus for the elementary double layer we have

T S =  p  dt dt20

d V
It follows that in applying the formula (25) to determine ^ 

system D, we may say that

_  i + w  h . m ^ i ST.

for the double

d> d V  _  ẐToP/ « _ , ) ! / «  
dsdt dn 7* V vq ° ° 1 - P dv0 dv o

Since the right-hand side does not contain t, we have only to consider the integral

f ( dsdt = \  s ds =
Jo Jo Jo

1
2

Thus, for the system D,

d V
dn

■ • -  ( 2 6 ) -



This result may also be obtained as follows To the first order we may concentrate 
the negative density in the region R on a surface bisecting that region. We may 
then consider the positive concentration C on and the negative concen tration on 
the bisecting surface as an infinitesimal double layer of thickness |e . We have seen 
that the surface density +  (7 is — ppeS3, and that e =  — peSz (in both cases to the 
first order only). Thus the density 8 of +  Cis pe, and the thickness r  of our layer 
is ; the product therefore rS is ipe3.

oo
Hence tS =  ^pe1 =  \p  % hpSp, and thus we arrive at the same result as before.

0
I now introduce an abridged notation analogous to that used previously, and write
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20; civ0 dv0 '

We then have by (26) on the last page

( lv  y 2W  cos/3 cos 7 , ,  « ;
dn ~7 F gin &

where e3 =  S h ‘S ‘.

By (22) to the first order

Assume then
r  =  n v W  =  e**> •

cos3 /3 cos3 7 (S'.,)2
sin /3 ApTp

Multiplying by <E>S‘ and integrating, we have

Hence
e2F  “

e2 =  —— -  % S ', and therefore h ’ = c2k2
sin /3 0 </>/ sin /3 <f>f

Substituting in (26)

OO M  n 8

=  s  9 jz e*Posin ft a ; 20/aS/.

sin2 /3 <£/

pL

(26),

0

0



FIGURE OF EQUILIBRIUM OF A ROTATING MASS OF LIQUID. 279

Since on integration the terms involving products of unlike harmonics will dis
appear, we have, as far as material,

dV
dn

o M . -
t  % c Po 2/i0

pi y  
4>iJ

D;s {

Now ipPo dar — dO d<f>.

Since the term which is being determined is of the fourth order in we may put 
k/kQ =  1, and we have

t f - V i f l Y P1 )J dn 8 0̂ 0 Jj1V <#•«■ /
©/<£ (N/ ) 2 d <}>

A0 0 9; (27).

Since f 0 W  =  1) IPo (v) — 0 and 290 =  0, the term in 2 corresponding to i =  0
vanishes.

§ 13. Terms in the Energy Depending the Moment o f Inertia.

We have to determine A r, the moment of inertia of the region R  considered as 
filled with positive density.

In order to obtain this result, we must express y~ +  in terms of surface 
harmonics. This was done in § 12 of “ Harmonics,” but as a different definition of 
S2 and S I  was adopted there from that which I shall use here, it is easier to proceed 
ab initio.

Let D2 — 1 — k2/ 2, and

W  =  i ( l + ^ - D ) ,  (4,)» =  * (1 +  k* +  D).

For both the suffixes 0 and 2, we have +  =  1, and

2 2 2 -  

K~ = <1 YD2 1 ’
,£> 1 — 3 q2 ,

* = v i — 2?>
020'2

— n'Z _  =  1 1— ? K i _  2

In accordance with equation (10) of “ The Pear-shaped Figure” I define the 
harmonics as follows :—

S2 =  (k2 sin2 0 — qp) (q’l  — cos2 <)>),

S I  =  (fc2 sin2 6 — q l)  ( f l  — K2 cos2 <[>).

Now y2 =  Id ( v2 — 1) cos2 6 sin2 ,=  lc2v2sin2 6(1 — cos2 f) ,

and,
1 _  r ,  . 2 t  cos3 f t  cos2 7

=  i w p • where T‘ = — w   •
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Thus

sin2 (y~ + z2)
=  cos2 ft — r, +  sin2 ft sin2 0 — (cos2 ft — tx) cos +  (cos2 ft — — kVj) sin2# cos2</>.

Let us assume, as we know to be justifiable, 

sin2 ftf, (f + *) = as; + bsj + c
=  -  [A&Yo* +  BfeV,2 -  C] +  [A,/„! +  B ,//]  sin2 6

+  [Ar/(J2 -f B qf]/c'2 cos2 — [A +  B] /cV2 sin2 # cos2 (j).

If  we equate the coefficients of sin2 6 and cos2 (j) in these two expressions, we have

A q 'f  +  BqV2 = sin2 ft a _ 9. . -n ,, 2. _ T\ ~  cos2 ft
K2 ’ A qJ  +  B

The solution of these equations may be written

A =
2% /

cos2 ft T \

D + Ky  2 ’ B =  — 2 Rqd 1 +
COS2 ft + Ti

D -  K7  1 2IJq'

i _ _ . (72 2
The simplest way of finding C is to put sin2 0 =  - - ,  cos2 </> =  ~ , so that/C- K

S2 — $22 =  0 ; we thus find

C =  i ( l  +  cos2 ft) — fiq.

Now for brevity write

sin ft
4:Dql cos ft cos 7 

We then have

/  ̂ cos2 ft \
\  ~  R + K2/ ’ M sin ft

4:Dql cos ft cos 7 \  J) — K2/  '1 +
cos2 /3 \

A — 2 cos /3 cos}y
'  2 ’sin /3 0

Hence, substituting for t 1 its value,

B =  -  2 M  +  r,
sin /3 204? ’

t ± l  =  2 (£Ss _  A/S/) +  1 f>
3 sin2 ft
cos2 ft cos2 7  / 1 N3 1 No3 4 

T  / j  ,o l 2 a an 2 s T s m  T  I
D

Now
D sin2 ft V/tf Ai21\2 / '32 A ^rd  ^  A ^ iy / ‘

=  i  * ( $ < . * - * * ) ■
Therefore
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Qf + 22) p
dr dd

I M L

— 4 TCOS /3 cos 7
sin3 /3 

cos3 /3 cos3 7 / I  ^80

{ I K S , - M V S ,* ) -  2 r i ^ 2 < F3 sin3 /3

L 1 M  , 47)  *  \1
Dsin2 /9 \ 2V  (i i  "1~ 3 A13r i3/ J •

When we integrate throughout the region A the limits of r  are — e$3 — S/4S'/ to 
zero.

Accordingly

A r — — M L

+

i i \ \ sin3 /3 e'5'3 +

2 S S g f *  ( » *  -  M * 8 J) +  *

+ cos3 /3 cos3 7 
2 D sin3 /3

1 $£3 1 <M92 , 4 ^  4>
"r 3 1L2V A^ 3 q'fAf T f  -r 3 V iy J(S3) 4  d6 d<f>

=  - m l h ~)i( !i\ 5J 2cos/3cos7 2 COS/3 COS 7 . , 1 +  cos2/3 
3sin3/3"

+ e3 (jh . _
2D sin /3 Ŵo* 2?

The moment of inertia of the ellipsoid J  is

Also

1 + cos2 /3 
sin2 /3 =  M kf 1 +  cos2/3 

5 sin3 /3
„ 1 +  cos2 /3 

3 sin2 /3 3J *

M2
MV  =  ,

3 sin3 /3 
4:7rp cos /3 cos 7

3 AT3 1 sin3 /3
2k0 ' 27rp ’ cos /3 cos 7 '

Lastly, to the required order we may put (k/k0Y equal to unity in the expression 
for A r.

Then

2 (A/ — A
3 m  gw3
2&0 27rp

(1 +  cos3 /3) sin /3 
10 cos ft cos 7 +  & +  e (̂02) ”  +  C36>22)

1 /I 7
sin3,8

( A - 4 + i a >,4D cos /3 cos 7 \ / / 03 qf2
(28).

This completes the expression for the lost energy E  of the system, which may now 
be collected from (19), (20), (24), (27), and (28). 

vol, cc.—a . 2 o
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§ 14. The Lost Energy o f  the System; Solution o f the Problem.

I f  the several contributions to the energy he examined, it will be seen tha t if i, the 
order of harmonics in f S t ,  is odd, there is no term  with coefficient in this 
follows from the fact that the <u and p integrals vanish for the odd harmonics. Hence, 
as far as concerns the odd harmonics, E  involves f s only in the form ( f f .  The 
condition th a t the pear shall be a level surface is th a t E  shall be stationary for 
variations of the f a  and of e. I t  follows tha t when i is odd f i  is zero. We may 
therefore drop all the odd harmonics, inclusive of f ,  and it is clear th a t the term 
— \Mdray1 in E  (given in (20)) vanishes to our order of approximation.

For the sake of brevity, I adopt a single symbol for the coefficients of the several 
kinds of terms in E  Therefore let

o° qo (p ŝ
A  =  a » [ I  M s +  2£ J  +  S ( » > /  +  W p - )  £  - t o  +  i f  f  » A

si n2 (3
2 b ;  =  2a . v  +  (»,- +  2» ,)  p! -  Pt,

V '  =  ( a 3  -  a , ' i
(1 +  cos2 /3) sin /3 

10 cos (3 cos 7 Ja =

l\ =  La)2 — M g)22 +

c =  L(j>3,

shl3 ft_____ /  L______&L i 4 \
2 4 Dcos /3 cos 7 \q'02 q f  3 ^°/  ’

* =  " * f>  where w  =  »■ =  »■ =
W ith this notation

M2 f ,f> » £,.,2
J S - t x l  Ae* +  2S B & f i  -  t  C ; ( f - f  +  (a +  fc» +  t f ,  -  »/,

Let us now make E  stationary for variations of e and f .
First, by the variation of any f  excepting and f f  we have

y  =  f > ................................................ <29>-

On eliminating all these we have
J/ 2E =  § _2 X’ Ao

-40 +  S W )3\
~<v y +  2B,e%  +  2 B & f ,>-

+  A ,  (a +  lit’2 +  t fs — h.ff) }
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By the variations of f„, and e3, we have

+  f  +  =  0 , -  d f f  - ~ t  =  0 .

A  +  t  (f )  e? +  B J % +  +  A  i  =  0 ■
hay

c ; J

But from the first two of these equations

4:7T p

( A f 8w2 c W )*

Therefore
47T/3 C„ ’ Of

8w3 A/ti
47 Tp

-  0 . . (30).

W hen 8co2 has been found, jf2 and are determined from
B0 o . c

47T p GoA  =  c l +

f  2 _ A ^  ®./S — 4r7Tp Cf*

(31).

A consideration of these formulae shows that it is immaterial what definition is 
adopted for any one of the harmonics, provided, of course, that the same definition is 
maintained throughout.

In order to evaluate A 0, we must eliminate 30/.

Since =  $/<&/ , 23/ =  <®./ ® ,  30/ =  l  anddv0 ’ 1 dv0 dv0

we see that 

Hence

dv0 dvQ cos /3 cos 7 ’

B,• =  (« ,* -  ““A\  cos /3 cos 7 / ^ /

, « ) s l „  a » l 7 > /  , 1 B « *  ( p / ) 2 _  1  / «  a . ,  a I 1 3j} a .  , U  ] 0  / o o )
+  2 3 ;  X #  + 4  T T  —  a u .  ( » *  ®< +  2 2 3 ;  P i  )  “  4  nn a  A ~ "  „  ffl, ,  J. a •h  ' ~ i h  ' 4 &  ' 2" <rt/ 4 cos/?cos7 a,* h

If for brevity we denote this last expression by [f, s], we have

+o — Ci (o'i)3 +  2 Cl] — iPU +  -  [h A‘] • •
2

B? =  (a*®/ +  4-23,> ) +  (23:i -  2 cog 7

67 =  («3 -  a /)  4>i.....................................

Pi
7  . . . . (32).

We have now the complete analytical expressions necessary for the solution of the
problem.

2 o 2
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PART II.

N um erical  Ca lc u l a tio n .

§15. Determination o f Certain Integrals.

The integrals &>/, p-,<j>-, depend on certain others, namely—

(S3).

After a large part of the work had been done, I found that these integrals tend to 
give the required results in the form of the difference between two large numbers, 
and that it would have been more advantageous to consider the integrals

It will he shown hereafter how the group (34) may easily be found from the group 
(33), and it may be mentioned that most of the results were determined in duplicate 
from both forms.

I proceed then to consider the H, T integrals.
Since A, =  1 — k2 sin2 y sin2 0, F'j — cos2 y +  K'~ sin2 y  cos2 sin2 /3 sin2 y, we 

have

(34).

T t 2 / i    / t -i 2?i — 2 t t 2 r —2  \iA2m ĝn2 p V112m il2m-2/

T21 — — \  cot2 y Tf£-2 +  ~  sin2 y T; /c /c I
\2n-2 
2m — 2

(35).

I now write

(36).
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I t  will be found from L e g e n d r e ’s tables tha t for 69° 49'-0, k  — sin 73° 54'-2

log F  =  -4317642, log E  -  ‘0355145
log F '  — -2047610, -1875655 
log F(y) =  -2117987, log =  9-9856045 _

By integration by parts

-  3

1 (36).

2 n — 1 2

2 (n — 1) 1 +  *'3

2n _  2  O  -  0  1  +  « *  n 2 » - 2  _

r r \ 2 n —2A0

n f  =

rvV2(/i ___10 —

(2n -  1) k3 
2n — 3

rpiAo2% — 4

(37).

J2 n - l  «'3 *° (2rc,-l)/c'2 0

Now write ,

G =  ^ (1 +  sec3 /3 +  sec3 y), I F  =  ^ (sec3 /3 +  sec3 y -j- sec3 /3 sec3 y).

The values of ft and y are 64° 23'"712, 69° 49'"0 ; whence log -8679015, 
log H ' — D4678555. Also we require hereafter log I I  =  17182664 (see § 3).

By differentiation

d A sin6 cos6 2ncos3/3 cos2y 2 (2n — l)G  cos2/3cos'27 2) A7 cos2/8 cos2y 2n — 2
dd Aj3" A12fl+2 A

Whence, by integration,

Aj2b A + Aj2»-2 A

„„ 2n — 1 . 2n — 2 TT,„ n — 3 , _ . .n L +2 = ------- # 11̂ ..............  I I  -f — — sec-jg sec3 y IE2 w - 4  • • (38).

On writing — 1 tan y for sin y, we find that exactly the same formula holds 
good for the T’s.

To apply this to the determination of Hq, Tq, we note that

nS_.2 =  cos3 y +  sin3 y E, T°_2 =  F' — sin3 y E. .. . (39).

Also n  l = ± ( F = — E') . . . .. . (40).

From the formulae given in C a y l e y ’s ‘ Elliptic Integrals’ it appears that

■ •
TS =  F'  +

sin 7
cos /3 cos 7 [ F ' E ( y ) - F ' F ( y )  +  E ’F(y)]

■ (41).

Now nS =  F, nlis given in (40), and IIo'1 for =  2, 3, 4 . . . are then given 
successively by (37).



Again, II” is given by (41), and the successive n f  are given by the general
formula (37).

Again (38) and (39) give
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n2 =  GtoS - 2 cos2 /3 cos2 7

H° =  |G n “ -  H ’n% +

(cos2 yF  + sin2 yE), 

I
F ;4 cos3 /3 cos3 7

and by successive applications of the formula (37) we find the successive values of
I lf , I lf.

I t is convenient also to have the series of H_3, T_2 integrals. These are to be 
found from

n f 2 =  n f  -  sin2 /3 n f+2, T f2 =  Kn sin2 y T f+2 +  cos2 y r f  . . (42).

The T integrals may apparently be derived by a similar set of formulae, but since 
at each step we divide by k'2, a small quantity, all accuracy is rapidly dissipated. 
Although we may safely derive one series of T integrals from a preceding one, we 
cannot so derive a succession of series, and it becomes necessary to find new formulae. 

In order to determine the T integrals, consider the group of integrals

U 2 k2m

If we write £ —
cos 7 tan </> 

cos /3 ’
cos 7 n ,a — —  -  , we mid cos y3

IT0u 2m —
_1____ r  (a* + g3)”*-1

COS y8 cos3™""1 7 J o ( 1  +  
whence, by some easy integrations,

J J O  =  1 7 ____ 9
2 2 cos yS cos 7 ’

d i

u ' =  4 cos S<;», ( sec3/3 +  A

3 7J"
U°e =  16 cos £ cos 7 tSec+ ^  +  se°4 y +  t  (sec' P +  sec2 y  +  sec2 £  sec2 y) +  1]. 

On expanding ^ in powers of k we see that

it, = vi; + + ~  vir +....
W hen m =  0 the U integrals are easily determined.



FIGURE OF EQUILIBRIUM OF A ROTATING MASS OF LIQUID. 287

The relationship between the successive U integrals is clearly

2 m

I now write for brevity

x  — cos /3, =  cos z =  sm y X =

I t  appears tha t we may put
1 + 1

To 2 . 4 . . . 2n +  X •

1 + * ’ 

1.3 2w + 1 .2n + 3

P x  +  y

2 27i + 2 2 .4  2a + 2 .2ti + 4 k'4 +  .

'7r2 ^ i 7r 1 . 3 . . .  2w — I f  1 2?i + 1  /0 1 . 3  + 1 . 2?j +  3  , ,

2 — 2-7/^-'' 2(1 +.:•) 2 .4 . . .  2m " l " "  +  2.4 2m +-2.2m 4 }■

TTZ 7T 1.3. . . 2 n  —  1 J 7

1 — 4 + y  2n +  2(1 + z) 2.4 ., .2,/ 6,1 . b.

_  07T? ^  7T 1.3 . 2»— 1
Te — l § x i p 2 n 2(1 + ..2 .4 . . .  2n ~ j C° °2 c4

}•

By considering in detail the cases where =  0, I find

+o — 1) i ;

1 + i»  +  5 = 1 +  .CI ( l - 2 p  +  2p>), 6„ = l - l x ;

(-C°=  *  +  ? +  +  i  +  f ) +  1

2
=  1 +  ^  +  V )  +  +  -bV  “  ¥/>3 +  ip 4),

c0 — 1 — iX +  +^s-

By some rather tedious analysis, it may be proved, by considering the manner 
which each T is derivable from the preceding ones, that

i2 /1.3 ... 2» — 3 . \ 1 . 3 . . . 2 w - 3
+  A 2n_21 +  2 .4 ... 2 — 2a _____ E

2n l  — 2 p \2 .4 : ...2 n -2

a2n — 1 +  ^
2X2

1 -  2X 2 n  — 1 2̂n-2 J?

B in=

K  =

1 -  

1

r  a , _ , + 2 +  £2 4»_s + “ ; i;;;; | “ i - 2 + 1 -  />)

1 -  2X (1 — X)2 a2.

X 2

2rik2
2^—1 ''2?i—2

l)

1
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a . ac2

2 n\-1 !A s\» i 2nX*
C 2 > l  -  1 _  2\  [ (  X ^ '  h n  2 -  1 C '2 > , - 2 _

successive applications, starting from the values for n — 0, I find

1 .3
1 , A.2 = p,Ai = ^ p ( l  +  p), A 6 = —- p  (l +  p +  sP~),2 . 4 1

p0 4- p 4- ip : 4- tp 3)- ^io =  2T77§ 4p2 +  4p° +  A p 4)5 

2TTTT0 p ( l +  P +  ip': +  %P +  A p 4 +  Ap")’

1. az=  1 +  X, a4 =  1 +  X +  §X.2, ae 1 4" ^ +  f A
cis — 1 4" ^ 4" 4" 4J 4* A * 4).

1 +  X +  § \ 2 +  +  TT^4 4- A X°-

1 +  ^  ^  ^  -  P 4  ^  -#4 — ip  ĵ 1 +  P 4- r, (1 — ip)— +  — aP T  /

1 . 3
2 .4 ^ 1 4- p 4- |p 2 4- ^  (1 +  p — p2)J>

~l +  P +  V 2 4 - f p 3 4 - 51| ( l + p 4 - i p 2 - p 3) }  

p j l  4- p 4- fp ' 4- yps 4- A p 4 4- (1 4-p +  fp ' — ip° — fp 4) ,

2 10 P L1 +  P +  ®P +  *P° A p 4+ A P  4- ^Ti(l +  p 4* tp2 4- ip  — M p‘ — 4pf)J >

1 -  I X . 6 , =  1 +  X -  X2, =  1 +  X +  TX2 -  X3,

1 +  x +  fx 2 -  i x 3 -  i \ \  &8 =  1 +  x 4- fx 2 4- 7 X3 — m  -  4A

1 .3 .5
2 . 4 . 6 p
1 . .  . 7
2 . .  . 8

*  +  *  +  *
/ — + a? +  J/2) +  ly

P 4 - -  +  — +  -H 3 - 2 T  3*V ^  :/4 ’

f c f n - p  +  ^ O  ~ i p ) + ^ }

2~4 ^ L1 +  P 4- |p : 4- H  (1 4- p -  p2) 4- ^  (l — |p  4- ip 2)J-
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C - h l
° 8 2 . 4 . 6 ^

_  1 ... 7 
lu ~  2 . . .  8 P

1 +  P +  V s +  V  +  kj ( l  + p +  V  -  +  p‘+ W

32
1 +  p +  V  +  v  +  A p 4 +  ~ ( i  +  P +  fp3 -  ip 3 -  I p 4)

+  3 5 aA l +  P +  ° X P3- V  +  P4) ,
C12 =  ?

c0 =  1 -  |-X +  |X3, c2 =  1 -f X — 2X3 +  fX3, c4 =  1 +  X +  0 X X3 -  2X3 +  X4, 

c6 =  7 +  X +  |X3 -  |X3 -  |X4 +  X8, c8 =  1 4  X 4  yX3 -  |X3 -  f |X 4 -  |XB +  fX«.

By means of these formulae I then formed a table of the n , T integrals, 
corresponding to the critical Jacobian for which y  — 69°49/-0, k — sin 73°54' -2.

A little consideration will show that if rioK, n f U\n . . . are a series of n  integrals, 
the A integrals as defined in (34) are as follows :—

K n =  H i ,AL =  -  M i l ,  A l  =  A2n L , AS, =  -  A3n L  &c.

Hence by differencing the n  integrals we find the A integrals, and similarly the 
differences of the T integrals give the ft integrals.

The converse is also true, a n d  b y  differencing A, ft we return to II, T.
In this way I obtain a series of values of the required integrals. I t  may be that 

the last decimal place is erroneous in some cases, but the results given in the following 
table are sufficiently accurate for our purpose.

Table of Logarithms of A and ft Integrals.

n. log A” 2. log A0n. log A2?l. log A4n. log A(Jn.

0 •1064412 •4317642 •9049643 1-4848513 2-1218296
2 9-8518424 9-9779679 •1696589 •4573383 •8543000
4 9-7422028 9-8168606 9*9187709 •0641097 •2747811
6 9-6704204 9-7230801 9*7896484 9-8771928 9-9969099
8 9-6167543 9-6573681 9-7062560 9-7667474 9-8443343

10 9-5738269 9-6068642 9*6454046 9-6909753 9-7467821
12 9-5380322 9-5658708 9-5977435 9-6339429 9-6770135

n. log Q.%. log fl0n. log 122n. log 124n. log fl6».'

0 9-3901374 •2047610 1-0302812 1-8667636 2-7138342
2 90333614 9-8993680 •7715371 1-6492556 2-5319082
4 8-8883413 9-7729763 •6613027 1-5528790 2-4473548
6 8-7988101 9-6930495 •5898109 1-4886133 2-3893878
8 8-7344878 9-6345770 •5366725 1-4398972 2-3245748

10 8-6844351 9-5884555 •4944045 1-4005018 2-2861489
12 8-6435159 9-5503544 •4594781 1-3669609 2-2533269
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§ 16. The Integrals cr2, cr4, £4

In accordance with equation (14) of the “ Pear-shaped F igure” the third zonal 
harmonic is defined by

where
=  sin 6  ( k ~sin2 6  —  q ° )  (< p  — 2 cos3 </>) ,y/ (1 — cos3 <f>), 

<f =  f  [i +  K3 -  (l -  A 3 +  k J I  1 -  2*.

The numerical values for the critical Jacobian are

k2 =  -9231276, ( f  =  -5746473.

W riting p 2 — k3 — ^3, we have

=  (p 2 — k2 cos3 d) y/(l — cos3 6) ( p3 +  k 3 sin3 <̂ )v/ ( k3 -f- k'3 sin3 </>).

Now let

a =  _p4, /3 =  2p 3/c3 +  p ‘, y =  +  2 p i Ki , 8 — k4,

a! —  p 'k \  f t  =  2 j3 3K3/</3 +  p 'k 1, k 3k /4 - f -  2 ' p 2K'1, o' =  k /6,

and we have

($3)3 =  (a — /3 cos3 # -f- y cos4 0 — 8 cos0 6) (a' -(- f t  sin3 <f> -(- sin4 </> -f- sin6 </>).

rfhe numerical values of the logarithms of the coefficients are

log a =  9-0843568, log a' =  9‘0496186,
log j8 -  9-8835606, log f t  87693310,
logy =  -1748006, log =  7-9810798,
log 8 =  9-9305236, log 8' =  6'6573112.

Let
j  (A2«) — — /3A .>„ +  yA4 8a ®

for n =  0, 1, 2.
J  (B2,t) — a'ft®* +  /3/T4y> -|- y'ft4,, +  8 ft|„j

The definition of <x2 in (8) then shows that

=  lC” 7 aC” - { / ( A. ) / ( « t) -  /(A 4) / ( « o) -  <? [ /(A 0) / ( n a) -  / (A s) / ( ! i 0)]}.

In order to find cr4 and £4, S3 must be raised to the fourth power, and we now define, 
for n =  1, 2, 3,

j  (Wi) — « X . — 2«/3.\.l,, 4- (2ay -f- /32) A2w — (2«S -}- 2/3y) A|w
+  (2/38 -j- 7’) A-L — 2ySAi“ +  S-A*2,
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/ ( f t2n) =  +  2a f t  t i l  +  (2 a!y' +  f t 1) ft4,, +  (2a' S' +  2ft y') ft|»

+  (2f t  8' +  ft?. +  8'ft” +  S'2ft]?(.

From the definitions of cr4, £4 in (8), we see that

£* =  l  cat£ f t ‘U - [ / ( A , ) / ( a « )  - / ( A , ) / ( « , ) ]  +  G [ / ( A 2) / ( f t e) - / ( A 6) / ( f i 2)]

-  rj[f(A2) / ( f l 4) - / ( A , ) / ^ ) ] } ,

cos3 /3 cos3 7 sin /3 
sin2 7 { f [ / ( A s)/(a ,.,)  - / ( n „ ) / ( A s)]

The computations (which were in this case actually made from the corresponding* 
formulae involving the II, T  integrals) gave

<r„ =  -0136866, £4 =  -00009246, <r4 — -00176135.

These have to be used in a formula which also involves f t :,. Now ft, denotes 
P 3© 3, or what should be the same thing, P, Q0. The formulae in the “ Pear-shaped 
Figure” with y  =  69° 49'"0, k =  sin 73° 54,-2, give

P ,1Q 11 =  -351697, $ 8<®3 =  -351744.

Thus the two functions, which should be identical in value, differ by ‘000047. I 
think tha t if I had taken y  — 69° 48'"997, k — sin 73° 54'"225 (the actual numerical 
solution for the critical Jacobian, although not fully stated in the “ Pear-shaped 
Figure ”) this small discrepancy would have been removed. However, the difference 
is quite unimportant, and as ft, generally means P /Q ^ , I take the former value and 
put log f t3 ■= 9-54617.

W ith this value I find the required result, namely

^3 f t  f t ?)3 +  -  K  =  -  *00050012 .....................(43).

§ 17. The Integrals co/, p/, <f>'.

Any harmonic aS*, where i and s are both even, whether in the approximate form 
of “ Harmonics” or in the rigorous form, may be written

S* =  (a — h cos2 6 +  c cos4 6 — d cos6 d +  • • •) (d  +  b' sin2 (f>-\-d sin4 <f> +  d sin6 +  • • • )•

Each series is, of course, terminable, the number of terms in each of the two factors 
being \ i  +  1.

For the determination of the o>, p integrals this must be multiplied by ( a$ 3 ) \  I t
2 P 2



can be seen, without actually writing down the product, how the coefficients will
occur; I write therefore those coefficients as follows :—

■ •

l0 =  aa, — a /3 +  ha, Z4 =  ay +  5/3 +  ca, =  aS +  c/3 +  da, &c.

m0 =  a'a', mz =  a'/3' -f m4 =  «'y' +  ^7?' +  m6 =  a '8' +  +  c 'ft +  dW, &c.
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Next let

f  (A2,i) =  ZoA.2» — 52A2jt +  kMn • • •

f  (ft2-,i) “  "b “b Wl4n 2n ~b . . . 

Then it follows from the definitions of c o / , i n  (8) that

for n — 0, 1, 2.

=  6cos8!3r A  j / ( A 0) /( f l .)  - / ( A , ) / ( n „ )  -  <?[/(A 0) / ( n 2) —/( A s)/(n„)]} ,
7T smH 7

Pi =  ~6 J  { / ( a. ) / ( o ,) - / ( A 2) / ( a „ ) j .sin3 y sin /3

I t  is, of course, necessary to reduce the two factors of S ’ to the required forms. 
The harmonics of the second order are

S2s =  (k2 sin2 9 — q?) (q? — k'2 cos2 </>), =  0, 2),

and I find q02 =  '3197540, q2 =  '9623311 ; whence we may find b, a’, for 
these harmonics.

For the harmonics of the fourth and sixth orders I take the formulae of “ Harmonics,” 
and attributing to the parameter /3 its value '0399726 (or more shortly '04 in the 
terms of the sixth order), 1 reduce (ft), (£/ (</>) to the required forms and determine 
a, b, c, &c., a', b', c',&c. The numerical values of these coefficients are given in the 
tables of § 20 hereafter.

I t  may be well to remark that p0 is needed (but not &)0), and in this case =  1, so 
that a =  a' =  1.

I t  seems useless to go in detail through the tedious operations involved in carrying 
out this process in the several cases.

Approximate formulae are given for the </>/ integrals in § 22 of “ Harmonics.” The 

| p0 dcrof that paper is the same as fir/c3 ' " C of the present one, and

the factor there written M is Id 7 _ Hence it follows that

47tM

sin3 /3

|  (P /C /)'2p  dcr of “ Harmonics.”

In order to apply this to the harmonics of the second degree, it must be borne in 
mind that a different definition of Sz(s =  0, 2) is being used here. If  [</>2], [</>32] be
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the values which would be found from “ Harmonics” without this correction, and if 
</>.,, (f>p are the required values, it appears that
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7*2 — Wl]
kV 4 
Ae2 : W  =  M

«V4

where a, e, a', e are the coefficients specified in § 12 of “ Harmonics.”
The approximate values found in this way for all the </> integrals are very near to 

the more correct values, and might have been adopted throughout without material 
error. But as there was not much certainty that the approximation was a good one 
—and indeed for S6 was probably bad—I also found all these integrals, excepting 
<f>g3, </>G4, by the method now to be described.

From (6) and (8) it appears that

• sin3 <if ax-2 i’, ■) a r  ®̂ *
6

If, therefore, we write

/ ( A2il) =  a2A2a — 2a8A|B +  (2 ac + 62) — (2 +  2 A?in +  . . . _
/ ( f t 2il) =  a,2n l  +  2ab'nlH +  (2a c' +  6'2) ft4„ +  (2 +  26 V ) +  . . .  ‘

we have

H  =  - / ( A o) /(Q -.)] .

The following table gives the results for all the <y/, p/, (/>/ integrals:—

Ta b l e  of Logarithms of </>, w, p Integrals.

1. s. log </>f\ Approximate log </vs 
from “ Harmonics.5’ log w/ + 10. log pf+  10.

0 0 — — — 7-63099

2 0 9-00516-10 9-00515-10 7-67371 7-02716
2 2 7-03970-10 7-03973- 10 ( - )  5-68193 ( - )  5-05256

4 0 9*69080- 10 9*69323 -  10 8*03358 7-35625
4 2 1*72664 1*72729 ( - )  8*33367 ( - )  7-59132
4 4 3*81541 3*81612 8*29058 7-37446

6 0 9-71219-10 9*69305- 10 7-97301 7-32602
6 2 — 2*20562 ( - )  8-72778 ( - )  7•94094
6 4 — 5*29999 9-10094 8-13161
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§ 18. The Integrals B/.

Adopting the notation of the last section we have

f j /  (v) =  a  +  h(i/2 -  1) +  c (?/ — l )2 +  d (v2 — l )3 +  . . .

Let v = - . , and k sinK. Sill y\r sin x, so tha t at the surface of the ellipsoid where

i/j =  y,  we have x — fi-
Then

Now
1

$ /  (v) = a +  hcot2 X +  0 cot4 X +  • • •

(v0) =  a +  hcot2 cot4 /3 +  . . .

dv n
(v“ — 1)1 ( V2 l + /3 \*=  K 

1 -

difr

0

and a* = [*,■• wi 1
«L/  V

\ /  (1 — k1 sin3 yfr) 

dv

c/C
sec x dxp

Hence <U/ =  k  {a-f- hcot2 +  c cot4 /3 +  . . . )21 sec x  dy(f
o [a +  cot2 x  +  c cot1 x- • 02 *

We have, in § 4 of the “ Pear-shaped Figure,” the rigorous expression of this 
integral for harmonics of the second order, viz. : —

_ k (1 — 2 q,3) (1 — q,3sin2 y)2 J E (y) (7 ) sin 7 cos 7 cos /3 1
2 V sin17 j  9/ 2/9? (1 — sin2 7) J s =  0, 2.

The values of q03, '/23 have been already given, and thus all the quantities involved 
are known.

The two factors of &/ (viz., 11/  and <J|J/) are given in approximate forms in 
“ Harmonics,” and therefore, if we made allowance for the different definition of (£f/ 
adopted in that paper, we might calculate <3/. The computations I made showed 
that the results obtained in that way would have been sufficiently exact, but as it 
was clear that the approximation to the © functions was not very close, and as the 
computation is tedious, it seemed better to find the by quadratures.

In order to do this I divided y  or 69° 49' by 12, and took 5° 49'-^ as the common 
difference, say 8. I then computed sec +  b cot2 x +  c cot4 x +  • • • , and 
sec x H- (a +  h cot2 x +  c cot4 X • • -)2 f°r values of 0, 8, 28, * . . 128 or y.

As a fact the first five or six values need not be computed because the early values 
of the functions to be integrated are practically zero. The ordinary formula} of

2



quadratures are inappropriate for these integrations, because the function, say to 
he integrated increases so very rapidly. I therefore take an empirical and integrable 
function, say v„,which is such tha t vl2 =  uizvn =  u1L; the quadratures may then be 
applied to u„ — v„,and the result applied as a correction to J In fact this
correction is always very small, and we might well be satisfied to use j v dip, which is 
very easy to calculate.

The empirical function v is given by
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v — e 5 un

Then when xp =  y, v =  u lz;when — and

Jo  log.—  'un

In all the cases I have to consider the exponential term is negligible, and the 
1̂2 ^

integral is  ̂ %3. •
e un

For the quadratures we have

vn — un> un — vio = uiz_ .  / V '3
%,/ ’ 1,9 “  Un C l

, &c.,

and the equidistant values of the function, to be integrated (arranged backwards), are

0 , 0, U i0 1̂2 ( ) ? 9̂ 1̂2 u\\
un

, m/8
uJ

, &c.

The first two are zero, the next three or four are found to be sensible, and the rest 
are insensible ; hence the quadrature is very easy.

The 33/ integrals are found thus :—

v> _  » 1 fL g  >(v \_  2&L cot2 ^  + 3 ̂  cot4 /3 4
; ; IP/ (vq) dv01 V 0/ sin a + b cot2 /3 +  c c o t '

The following table gives the %/, 33/  integrals •
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T a bl e  of Logarithms of the %, B integrals.

i. s. log 21/ + 10. log J3is.

2 0 9-69312 •09295
2 2 9-33300 •40665

3 0 9-54617 •20467

4 0 9-44928 *28206
4 2 9-25987 •41239
4 4 9-06489 *44858

6 0 9-24383 •35876
6 2 9-16199 •41249
6 4 9-02369 •44195

§19. Synthesis o f Numerical Results; Stability o f  the Pear.

In the following tables and remarks I collect together some of the results which 
occur in the course of the work. The final places of decimals as given have, perhaps, 
in many cases but little significance :—

(i.) (2.) (3.) (3) + (4).
i. s. <a3 - log (%■ -  21,:*) </>,;* = log 6y.

/*, sin2/? \ _ a
( 3 2cos/S cosy/^ ‘ Bf.

2 0 - -141617 ( - )  8-1562926- 10 •0029865 -  -0011976 •0017889
2 2 •136417 6-1745705- 10 -  -0000247 •0000127 -  -0000120

4 0 •07033 8-53794 -10 •005214 -  -002555 •002659
4 2 •16978 •95653 -  *008965 •004390 -  -004575
4 4 •23558 3-18755 •005594 -  -002664 •002930

6 0 •17638 8-95864 -10 •004067 -  *002384 •001684
6 2 •20649 1-52052 -  -019041 •009820 -  -009221
6 4 •24609 4-69108 •032054 -  *015232 •016822

For all harmonics higher than those of the second degree is the coefficient
of stability. Since in all these cases this expression is positive, the ellipsoid is stable 
for all such deformations.

If U-f- 8 Ube the energy function for the pear, whose variations for constant 
moment of momentum are considered by M. Poincare, we have in our notation

U  +  8 U =  — i  ( +  i  (Aj -  A ,) (»s +  &»*).j -zy12
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I t is easy to show from our analysis tha t for the deform ation/2$3,

297

 ̂u  — 2k0 { (^ 3 _  + 27rp a j 5

and that the corresponding expression with tr in place of c3 holds good for the 
deformation /A S /.

Forestalling the results obtained below, it may be stated that for f zS.z

and for /A S '/

O 1/2
W  =  {--01433 +  -03959} ;

Q 1/2
h u =  ~ { f i f  {-00015 +  -00002}.

Thus in both cases hUis positive, and this shows that the Jacobian ellipsoid is also 
stable for the ellipsoidal deformations. The fact, that SE  (the variation of my 
function of energy for constant angular velocity) is negative for the deformation 
illustrates the tru th  of M. Poincare’s remark (‘Acta Math.,’ 7, p. 365): “ Si au 
contraire la rotation de la masse fluide etait determinee par celle d’un axe rigide 
(comme dans les experiences de Plateau par exemple), tout deplacement produirait 
une resistance passive et l’ellipsoide de Jacobi serait toujours instable.”

I have in (32) written

[*■ *] =  «?#? { ( * - *  +  W f V  -  #« W }  •

The following table then gives further stages in the work : —

i. s. [*, *•]

2 0 *00014032
2 2 •00000072
4 0 •00009937
4 2 •00000276
4 4 •00000001
6 0 •00002835
6 2 *00000403
6 4 *00000002

2 [i,s] = •00027558
^3 (°’2)2 + 2£4] ~ ^4 = -  -00050012

Ao = -  -00022454
*

Cf “ +-00001861

Numerator. . -  *00020593

•00022329
+ *00000097 

•00020486 
•00000231 
•00000001 
•00003118 
•00000256 
•00000001

BtlCf.

•00024190 -*00022329 
+-00024190

+ *00001861

-  *12482
-  *08059 

*07705
-  *000506 

*0000019 
*01852

-  *000278
* 00000034

Y O L . C C .— A . 2 Q
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The next step is to find 

sin /3 (r  _  — - _____ . i _  co f£ _ \ ------- s in # ------- /  1 +  S ° * £
Jj 4 D q/ cos /3 cos 7 \  I) + *2/ ’ 4 Zty22 cos /3 cos 7 \  D — «2

where D 2 =  I — /c3/c'2.
The numerical values are logD  =  9'9840165, log L  '6454565, log M  =  '9591960.

From'these we obtain c =  L<f>2, ti =  M<f>23;whence

II 
II 

II -  -055837

•000804
•031701

Denominator = -  *023332

So)2In accordance with (32) the Numerator divided by the Denominator is — ^  2, 

and I thus find
, 8&)2 
lo« 4 ^ =  ( - )  7-94578.

I t was found in § 7 of the “ Pear-shaped Figure ” that the angular velocity of the
. . . .  to2 .critical Jacobian was given by -— =  T4200. Accordingly, the square of the angular 

velocity of the pear being or +  So/, we have

co2 +  gw2 =  ft>3[l — -124314c2].

From the formulae (31)1 then find

=  '15068e3, / 32 =  -50839e2.
p

The other f s are equal to ,;s e3, and are given in the preceding table. From (28) 

and the definitions of a, b, C, ti it appears tha t the moment of inertia of the pear is

31f2a
Aj A r ~  27rpIC()

W ith log a =  9-8559758, I find

1 +  i  e* +  » f* ~  »
t
a ■

0
a-

4  -  [1 + -isicnc*].

The angular velocity of the pear is

■v/(o)2 +  8ft)3) =  w [1 — -062157e3].
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Multiplying these last two expressions together, we have the moment of 
momentum of the pear ; it is

3 M°aa>
2iTpk0 [1 +  -068854e2].

I t  follows that, whilst the angular velocity of the pear is less than that of the 
critical Jacobian, the moment of momentum is greater. This result would afford a 
rigorous proof of the stability of the pear if the numbers were based on a complete 
solution of the problem. But as we have not determined an infinite series of new 
harmonic terms, it becomes necessary to consider how the result might differ if the 
hitherto uncomputed terms were added.

If  e denotes the uncomputed portion of the infinite series 2 j s] + (BIT
Of and if

A denotes the addition to be made on that account to any of the results as already 
computed, we have

ee3/ 8ta3 \ ________
\4lttp)  '023332 ’

a n d  A
/ 8ft)2\
\ ® /

2ee3
•023332 x T 4 2 '

Whence

Since

8ft)2
A I V K  +  S*>2)] =  £«A  =  0) [301"8346ee2]

8ft)„ c i >’3f  — -Z l I 2- f'2 — Ui_
2 — (7  ̂ ' A ^ 2

2_
4t rp C„ C2

SaS ft 
47rp C22

A r, =  y A  =  -  103" ,  
4 2 C2 4t rp

— a 2 4vp io :3*4563848

Then

A (Aj A r) 3 i¥ 2a
2iTpk0

ZMH
2irpk0

\  4 6 a/ 23
3 i i 2a
2 7 rp

[ _  8 3 3 7 8 9 2  +  3 9 7 4 7 2 ] ec2

( _  794-0420) ec2.

Therefore
^ /(ft,3 +  So>3) =  © [ I  — -0621568e3 +  301-8346ee2]

Ay — A r = +  -13101068e2 — 794"0420ee2]
2irpk0 L

By multiplication we find that the moment of momentum is

3M*U(0
2irpk0

[1 +  -0688539e2 — 492-2074e2e],

2 Q 2
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The coefficient of e2 is positive and the pear is stable, provided th a t

492*2074e <  *0688539, 

or e <  *00014.

Inspection of the table of numerical results shows tha t the zonal harmonic terms 
contribute by very far the larger portion of the sum. Now the sixth zonal term was

[6, 0] +  =  *00002835 +  *00003118 =  *00005953.

This is about 2 of the critical total *00014. The pear is then stable unless the 
residue of the apparently highly convergent series shall amount to 2 j  times the 
contribution of the sixth zonal term. Such an hypothesis appears profoundly 
improbable, but I have thought it expedient to make a rough determination of the 
contribution of the eighth zonal harmonic to the sum.

If  we take k as equal to unity, Ss =  $ 8 (p) C8 ( ) =  P 8 (p), and we easily see that 
the formulae (8) reduce to

w8 =  

Ps —

3 (Dj*!* (1  + sin3y sin3 0 ) cos 0  /c, v9CY Jn 7 ,
7 cos i ' l l  I T- 7 (s»> d e ^

6 cos97 f*’rf*> cosfl IC1^
J o  J o  1 -  sill27 sin2 0 ^  ^7r sin y

In these integrals only enters through (S3)'2 or [ $ 3 (p)]2 [C3 (<£)]2. 
Now

l ‘ ' [ 0 3 ( ^ ) ] 2 #  =  [ « '  +  i / s '  +  I 3I  /  +  S '
=  7̂ where K  — *1452.

Hence

Ps sin 7

In these integrals

?8 (f*) =  T28 [6435 sin8 9 — 12012 sin6 -f  6930 sin4 — 1260 sin2 +  35]

[$3 (p)J — (*■— & cos2 0 +  y cos4 9 — 8 cos6 9,

where a, £ , y, 8 have known numerical values.
1 he integrations may of course be effected rigorously, but it seemed far easier to 

determine them by quadratures. I therefore computed the values of the functions to
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be integrated for 6 — 0, 15°, 30°, 45°, 60°, 75°, 90°, drew curves on squared paper, 
and counted the squares on the positive and negative sides of the axis.

In this way I find log w8 =  6765, log ps =  5'653.
The integral (f>s is found a t once from § 22 of “ Harmonics ” with /3 0. This

gives <f>8 — -j —f ,or log <̂>8 — 9'247.
If  P 8 f/x) be expressed in terms of cosines of 6 we have

P 8 (/x) =  a — b cos2 6 c cos4 6 — cosG 4* cos8 6,

where a =  1, b =  18, c =  74'25, d — 107'25, e =  50'273.
Then we may, as in § 18, put

u„ =  P 8 (v) =  a +  bcot2 x +  c cot4 x +  d cot0 x +  e cot8 y

As was done in that section, I then computed un  and and so found the integral 
of the empirical function. The result gave

log &8 =  9*191 ; whence logjjg =  '370.

I t may be admitted that the determination of $f8, B8 is not wholly consistent with 
that of the previous integrals, since I oidy assume k  to be unity in as far as the values 
of a, b, c, d, e are affected.

Applying these values as before, I find ^ 3 —^[s= '197, log C8=8'540, P 8= '000092,
1] •~  =  *0027, and

(B Y2
• [8, 0] =  ‘00000051, 7 ^- =  ‘00000025.

Hence that part of € (the uncomputed residue of the series) which depends on the 
eight zonal harmonic is only about *0000008. The contribution is so insignificant 
Compared with the critical total *00014, that I have not thought it worth while to 
make estimates for the tenth and twelfth harmonics.

It may then be confidently asserted that the pear is stable.
JB

In the course of this estimate we have also found e3 — '0027e~.

§ 20. Second Approximation to the Form o f the Pear.

Extracting the numerical values of the s from our results, we find that the 
inequality of the critical Jacobian ellipsoid is

eS3 +  e3 [75068 S2 +  '50839 S f  +  '07705 S± -  '000506 S f  +  '00000019

+  -01852 Sa — '000278 S f  +  '00000034 S a* — ? SUG -f '0027 Ss — . . .]•



In order to give this expression a clear meaning, it is well to define the several s. 

=  (k3 sin3 6 — q3 sin 6) (q'2 — cos3 <f>) y /(1 — k '2 cos3 <£), 

where k 2 =  '923128, q2 =  '574647

k '2 =  '076872, '425353.

For the other harmonics we have

302 PROFESSOR G. H. DARWIN ON THE STABILITY OF THE PEAR-SHAPED

S* =  (a — b cos3 0 +  ccos4 6 — d  cos6 6 +  . . .) -f- b' sin3 <£ -f- d  sin4 sin6 f- • • •),

where the values of a, b, &c., a', V, &c. are as given in the following table :— .

i. s. a. b. c. d. e.

2 0 
2 2

•603374 
-  -039203

*923128
•923128

4 0
4 2
4 4

1
-  1*7988 

*0839

5*450
36*006

-7*975

4-901
44-805
95-574

6 0
6 2
6 4

1
-8*4

3*78

12-6
121-8

-338*312

29-984
439-425

3680-303

18-834
320-523

4482-844

8 0 1 18 74-25 107-25 50-273

i. s. cd. V. c’. d’. e‘.

2 0 
2 2

•603374 
-  -039203

•076872
•076872

4 0
4 2
4 4

•8036
-1-0666

1-0136

•3718
1-8135

-8-0266

•0280
*1865

8 *

6 0
6 2
6 4

•5989
-1-1408

1-0305

*6888
1-5349

-7-704

•1512
•4404

6-944

•oooo
•0264
704

8 0 1 0 0 0 0

The sui face of the pear is determined by measuring a certain length along the arc 
of curves orthogonal to the surface of the ellipsoid. By equation (22) it appears 
that that length measured in the direction of the positive normal is
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2>o [eS3 +  2 m  +  ie* (A2 +  xy — 2 G ) (s 3y

In order to construct a figure it will be convenient to adopt as unit ol length c, 
the greatest axis of the ellipsoid which is deformed. We know that

h  7 T i n  k c o s  7  J 1 7 ~
c =  g*n 5  ̂ ^ co"t p, — sin ’ so  ̂ =  G cos A ci — c cos y, and the mass oi

the ellipsoid is f  7rpc3 cos /3 cos y. But since the mass of the pear is jnpk(f  

where Jc0s =  k3 (1 +  e2cr2), it follows that it is

cos /3 cos 7  

sin3 /3

f 7rpc3 cos /3 cos y (1 +  •0136866c3).

Hence the mass of the pear is a little greater than that of the ellipsoid whose 
deformations we shall draw, and the protuberances above the surface slightly exceed 
in volume the depressions below it.

We have Po =
c cos /3 cos y c cos (3 cos 7

(1 — sin2 /3 sin2 Of (cos2 y + k'2 sin2 y cos2 <pf ’

and the expression for the orthogonal arc, measured from the ellipsoid to the pear, is 
therefore

P o eS3 + r...... ._ ..i ______ , ___________ i________
\ c )  [2 (1 — sin2yS sin2 0) 2 (cos2 y  + k.'2 sin2 cos2

—i  (1 +  sec3 (3 +  sec3 y) |  +  t f iS {  .

• I t  appears to me that it will afford a sufficient idea of the corrected form of surface 
if I draw two principal sections, namely, first, a section through the axis of rotation 
and the longest axis of the ellipsoid, and, secondly, a section at right angles to the 
axis of rotation. I t  is not worth while to consider the third section drawn through 
the axis of rotation and the mean axis of the ellipsoid, since it will hardly differ 
sensibly from the uppermost figure shown in the “ Pear-shaped Figure.”

For the sake of brevity I will call the first and second sections the meridian and 
the equator.

The three ellipsoidal co-ordinates v, 6, <f> of any point are connected with by
the relationships

cc =  c sin y . (kV  — 1)j (1 — k3 sin3 Of cos <j>,
y  — csin y . k ( v3 — 1)* cos 6 sin , 
z =  csin y . kvsin 0(1 — k 1 cos3 <ff.

The equation to the surface of the ellipsoid is =   ̂^ =  g-n ^ '
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The equation to the meridian plane in rectangular co-ordinates is simply 0, 
that to the equator is x  =  0.

In ellipsoidal co-ordinates the equation to the equator is simply but the
equation to the meridian is peculiar, for it is in part represented by 0 =  \ tt and in 
part by cf> — 0.

The curve 8 =  -j -rr, (f) — 0, which defines the limit between the two regions where
the equation to the plane has different forms, is clearly the hyperbola

/y>3
z3 — — c3 sin3 y.

In the region from z =  co and x  small down to this hyperbola the equation is 
0 — ; and between the origin and the hyperbola it is </> =  0.

If  we follow the arc of the ellipse from the extremity of the c axis we begin with 
8 — -̂ tt, ffj =  I 77-, and 8 remains constant whilst <f> falls to zero. Then maintains a 
constant zero value whilst 8 falls from to zero.

On the side of the origin where zis negative, 8 is of course negative and undergoes 
parallel changes.

The hyperbola 8 =  \ tt, <f> =  0 cuts the ellipsoid so near to the extremities of the c 
axis that an adequate idea of the deformation may be derived from the two extreme 
values of <f>, namely, -̂ 77 and 0. I have also thought it sufficient to compute the 
deformations for 8 = 0 ,  30°, 60°, 90°. We thus obtain the following scheme of values 
of 8, <f>, together with the corresponding rectangular co-ordinates (with c taken as 
unity), at which to compute the deformation :—

Meridian (y — 0). Equator (x =  0).
8  =  90°, 4 — 90° ;z =  1, X  — 0 8  =  90°, (f> =  9 0 ° ;  2 = 1 , OII

OIIO ~OCiII z =  -961, X  — •096 8 =  60°, (f> =  9 0 ° ;  z =  -866, 0oq11

8  =  60°, r f > =  0 ; 2 =  *832, X  = T91 8  =  30°, =  90°; 2 =  -5,y =  -374
8  =  30°, 4 > =  0 ; z =  •480, X  = •303 8 =  0°, <f> =  90° ; 2 =  0, y  =  '432

II O ~e
- II 0 2 — 0, X  = •345

I t  did not seem to be worth while to compute the deformations due to the eighth 
zonal harmonic, since it would be quite impossible to show them on a drawing of any 
reasonable scale.

In order to exhibit the magnitudes of the contributions of the harmonics of the 
several orders, I give the normal departures Sn a t the points s = -j- l, x  =  0, y  =  0.
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Term of first order . . . S3 ± •148227c

Terms of second order pro-
portional to e2 . . . . (SsY -  -010986

S-2 •061844
s 2* •000751

s 4 •092715
Si* •000849
s 44 •000000
s a •026647
-V •002011
^o4 •000001

'184067 
-  -011737

-  -011737

•17233O02

The following are then the results for the normal departures at the several points 
whose rectangular co-ordinates are specified :—-

Meridian {y = 0).

% s= ±  1, x — 0, rb '1482c -f  -1723c2.

z =  ±  -961, x  — -096, Bn =  ±  -0932c +  -0858c2.

z =  ±  -832, x  =  -191, ±  -0189e +  -0103c2.

z =  ±  -480, * =  -303, = T  '0223c -  -0033c2.

« =  0, x — -345, Sn — +  *0046e2.

Equator (x = 0).

z =  1, y — 0, i  *1482e +  *1723e3.

z =  ±  -866, y =  -216, Sn =  ±  -0300c +  -1265c2.

z = ±  ■ 5,y — -374, Sn  =  T  -0354c -  -0220c3.

2 =  0, y — -432, Sn  =  -  -0095e2.

In order to draw a figure I take e =  -J-. Throughout most of the arc of the 
ellipsoid the approximation is probably good, but at the vertices, which are just the 
points of most interest, it is pretty clear that we are using a somewhat extreme value 
for e. The results are

V O L . C C .— A . 2 R
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Meridian {y —0). Equator (x = 0).

z = 1, x  =  0, Sn = +  *117. z = V  y =  o, Sn — +  *117.

z = •96, x =  *096, Sn = +  -068. z =•866, y  =  -216, Sn = +  -047.

z = •83, x =  *19, Sn +  -012. Z — JLn ii CO Sn = -  -014.

z = •48, 8 II CO JO Sn = — -on. z = O II CO qo Sn = — -002.

z — 0, x — ’345, Sn = +  -ooi. z =  — •5, y  =  -374, Sn = +  -003.

z = — -48, x  — ‘30, Sn +  -010. z =  — •866, y =  '216, Sn +  *017.
z = — '83, x  =  ‘19, Sn — -007. z =  — i» y  = o.Sn = — -031.

z = — '96, x — ’096, Sn — — '025. N .B .—-For z =  ±  *866, Sn in both
z = -  1, x =  0, Sn — -031. cases positive.

These numbers are set out graphically in the annexed figure. I t  will be noticed 
that whereas the protuberance at the positive end of the z axis is great, the

B

A

Second approximation to Pear-shaped Figure. Upper section “ equatorial,” lower “ meridional.

deficiency at the negative end is almost filled up. We may describe the general 
effect by saying that the Jacobian ellipsoid is very little changed, excepting at one 
end of its longest axis, where it shoots forth a protuberance.

S u m m a r y .

If  a mass of liquid be rotating like a rigid body with uniform angular velocity, the 
determination of the figure of equilibrium may be treated as a statical problem, if 
the mass be subjected to a rotation potential.

The energy, say IT, lost in the concentration of a body from a condition of infinite 
dispersion is equal to the potential of the body in its final configuration at the
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position of each molecule, multiplied by the mass of the molecule and summed 
throughout the body. In the system, as rendered statical, it is necessary to add the 
rotation-potential to the gravitation potential before effecting the summation. That 
portion, say T , of the whole lost energy which arises from the rotation-potential is 
simply the same thing as the kinetic energy of the mass, when the system is regarded 
as a dynamical one. I f  we replace W-|- T  by E  to denote the whole lost energy of 
the statical system, the condition that the surface shall be in equilibrium is that the 
variations of E  for constant angular velocity shall be stationary. E  must then be a 
maximum or a minimum, or a maximum for some variations and a minimum for 
others. _

I t  might appear a t first sight that the condition for the secular stability of the 
figure is that E  should be a maximum for all variations, and this is so if certain 
constraints are introduced ; but in the absence of such constraints the figure may be 
stable although Eis a minimax.

I t  has been shown by M. P o incare  that the stability must be determined from the 
variations, subject to constancy of angular momentum, of the total energy of the 
system, both kinetic and potential. The two portions of the total energy, say U, are 
again W  and T ; but whereas E  involves the lost energy W  of the system under the 
action of the gravitation potential, U involves the potential energy which is equal to 
— W. Thus U  is equal to — W  +  T.

The variation of U  with constant angular momentum leads to results for the 
determination of the figure identical with those found from the variation of E  with 
constant angular velocity. But there is this important difference, that to insure 
secular stability U  must be an absolute minimum. I t  appears, in fact, that, in the 
case of the pear-shaped figure, while E  is actually a maximum for all the deforma
tions but one, it is a minimum for that one, which consists of an ellipsoidal strain of 
the critical Jacobian ellipsoid from which the pear-shaped figures bifurcate (§ 19).

But M. P oincare has adduced another consideration which enables us to determine 
the stability of the pear by means of the function E, without a direct proof that U is 
a minimum for all variations. For he has shown that if for given angular momentum 
slightly less than that of the critical Jacobian ellipsoid, the only possible figure 
is the Jacobian, and if for slightly greater angular momentum there are two figures 
(namely, the Jacobian and the pear #), then exchange of stability between the two 
series must occur at the bifurcation. If, on the other hand, the smaller momentum 
corresponds with the two figures and the larger with only one, one of the two 
coalescent series must be stable and the other unstable. Now it has been proved 
that the less elongated Jacobian ellipsoids are stable, so that if the first alternative 
holds the stability must pass from the Jacobian series to the pear series; and if the 
second alternative holds the pear series must be unstable throughout. The question

* For the sake of simplicity we may speak of a single pear, instead of two similar pears in azimuths 
180° apart.

FIGURE OF EQUILIBRIUM OF A ROTATING MASS OF LIQUID.

2 R 2



of stability is then completely determined by means of the angular momentum of the 
pear ; if it is greater than tha t of the critical Jacobian the pear is stable, and, 
if less, unstable.

I t  suffices then to determine the figure by means of the variations of E  with 
constant angular velocity, and afterwards to evaluate the angular momentum.

I t  was proved by M. P o in c a r e , and repeated by me in my previous paper, that 
the first approximation to the pear-shaped figure is given by the third zonal 
harmonic inequality of the critical Jacobian ellipsoid—zonal with respect to its longest 
axis. In proceeding to the higher approximation I suppose tha t the amplitude of 
the third zonal harmonic is measured by a parameter e, which is to be regarded as a 
quantity of the first order. W e must now also suppose the ellipsoid to be deformed 
by all and any other harmonics, but with amplitudes of order e2. In the first 
approximation the lost energy W  is proportional to e3, but it now becomes necessary 
to determine TV as far as the order e*. A change in the sign of e means tha t the
figure of equilibrium is rotated in azimuth through 180°. Such a rotation cannot 
affect the value of the energy, and it thus becomes obvious tha t the odd powers of e 
must be absent from the expression for TV.We have further to find the moment of 
inertia of the body as far as the terms of order e3, and thence to find the kinetic 
energy T. The function E  is equal to TV  + T.

In order to attain the requisite degree of accuracy, it is convenient to regard the 
pear as being built up in an artificial manner. I  construct an ellipsoid similar to and 
concentric with the critical Jacobian, and therefore itself possessing the same 
character. The size of this new Jacobian, which I call is undefined, and is subject 
only to the condition that it shall be large enough to enclose the whole pear. The 
regions between J  and the pear being called I suppose the pear to consist of 
positive density throughout J  and negative density throughout (§ 1).

The lost energy of the pear consists of tha t of J  with itself, say \ J J ; of J  with 
R, which is filled with negative density, say — J R ;  and of R  with itself, say 
This last contribution to the energy must be broken into several portions. I t  was 
the evaluation of \RRwhich baffled me, until M. P o in c a r e’s solution came to 
my help.

If  we imagine the ellipsoid J  to be intersected by a family of orthogonal quadrics, 
and if we suppose for the moment that the region R  is filled with positive density, 
we may further imagine the m atter lying inside any orthogonal tube to be transported 
along the tube, and to be deposited on the surface of J  in the form of a concentration 
of positive surface density +  C. The mass of C is equal to that of +  It, but it 
is differently arranged. In the actual system R  is filled with negative volume 
density, and we may clearly add to this two equal and opposite surface densities 
+  C and -  C on J.

Thus the m atter lying in the region R  may be regarded as consisting of negative 
surface density — C on J ,together with a double system, namely negative volume
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density — R  in conjunction with equal and opposite surface density -f This
double system, say D, is therefore C — R.The lost energy \R R  may be considered 
as consisting of three parts; first the energy of — with itself, say \C C \  
secondly tha t of D  with itself, say %DD;  thirdly that of — with I). This third
item is obviously equal to — <7(7 +  OR, and therefore |  is equal to — \C C
+  CR +  \B B .

I t  follows that the gravitational lost energy of the pear may be written symboli
cally in the form

\ J J  -  J R  +  CR -i<7<7 +  \B D .

In this discussion no attention has as yet been paid to the rotation, but fortunately
happens that the introduction of this consideration actually simplifies the problem, 

for if we suppose f •/ J  and J R  to mean the lost energies of J  with itself and with R 
on the supposition that the mass is rotating with the angular velocity of the critical 
Jacobian, the formulae become much more tractable than would have been the case 
otherwise.

The inclusion of part of the angular velocity in this portion of the function 
only leaves outstanding the excess of the kinetic energy of the pear above the 
kinetic energy, which it would have if it rotated with the angular velocity of the 
critical Jacobian. I f  w denotes the latter angular velocity, and {or +  Sco2)* the actual 
angular velocity of the pear; if Aj be the moment of inertia of J, and A r that of R  
considered as filled with positive density, we have

E  - \ J J  -  J R  +  CR -  \C C  +  +  {Aj -  A,) So>9.

In this statement I have omitted a term which arises from the displacement of 
the centre of inertia from the centre of the ellipsoid; it is duly considered in the 
paper, but is shown to vanish to the requisite order of approximation (§§ 2, 14).

The co-ordinates of points are determined by reference to the ellipsoid J, which 
envelopes the whole pear, and the formula for the internal gravitation of J, inclusive 
of the rotation a>, is of a simple character. The size of J  is indeterminate, and 
therefore the formulae must involve an arbitrary constant expressive of the size of 
But the final result E  cannot in any way depend on the size of the ellipsoid which 
is chosen as a basis for measurement, and therefore this arbitrary constant must 
ultimately disappear. Hence it is justifiable to treat it as zero from the beginning. 
I t  appears then that we are justified in using the formula for internal gravity 
throughout the investigation. I f  the artifice of the enveloping ellipsoid had not 
been adopted, it would have been necessary to take note of the fact that the pear 
is in part protuberant above and in part depressed below the ellipsoid of reference. 
M. P oincaius did follow this last plan, and then proceeded to prove the justifiability 
of using the formula for internal gravity throughout, The argument adduced above 
seems, however, sufficient to prove the point.
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Although the constant expressive of the size of is put equal to zero—which 
means that the pear is really partly protuberant above the ellipsoid—-I have found 
that a considerable amount of mental convenience results from always discussing the 
subject as though the constant were not zero, so that the ellipsoid envelopes the 
pear, and I shall continue to do so here.

When an ellipsoid is deformed by an harmonic inequality, the volume of the 
deformed body is only equal to that of the ellipsoid to the first order of small 
quantities. In the case of the pear, all the inequalities, excepting the third zonal 
one, are of the second order, and as far as concerns them the volumes of J  and 
of the pear are the same. But it is otherwise as regards the third zonal harmonic 
term, and the first task is to find the volume of such an inequality as far as e1. 
When this is done we can express the volume of J  in terms of tha t of the pear, 
which is, of course, a constant (§§ 3, 4).

By aid of ellipsoidal harmonic analysis we may now express the first four terms 
of E  in terms of the mass of the pear, and of certain definite integrals which depend 
on the shape of the critical Jacobian ellipsoid (§§ 5, 6, 7).

The energy ^  E D  presents much more difficulty, and it is especially in this that 
M. P oincarE’s insight and skill have been shown. The system D  consists of a layer 
of negative volume density, coated on its outer surface with a layer of surface 
density of equal and opposite mass.

Two surfaces, infinitely near to one another, coated with equal and opposite surface 
densities, form together a magnetic layer or a layer of doublets. The change of 
potential in crossing such a layer is 4-n- times the magnetic moment a t the point of 
crossing, and is independent of the form of surface. To find the difference between 
the potential at two points at a finite distance apart, one being on one side and the 
other on the other side of the layer, we have to add to the preceding difference 
a term equal to the force on either side of the magnetic layer multiplied by the 
distance between the two points. This additional term is small compared with that 
involving the magnetic moment, provided that the distance is small. I f  the magnetic 
layer coincided with the surface of an ellipsoid the force in question would be exactly 
calculable, and if it lies on the surface of a slightly deformed ellipsoid the force 
remains unchanged by the deformation as a first approximation.

Thus it follows that it is possible to calculate the difference of potential at two 
points lying on a curve orthogonal to an ellipsoid, when one point is on one side 
and the othei on the other side of a magnetic layer residing on a deformation of the 
ellipsoid. Further, if the two points lie on the same side of the magnetic layer the 
term dependent on magnetic moment (which would represent the crossing of the 
layer) disappears, and only the term dependent on the force remains.

lwo equal and opposite layers of m atter a t a finite distance apart may be built up 
fiom an infinite number of magnetic layers interposed between the two surfaces. 
Hence by the integration of the result for a magnetic layer we may find the change
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of potential in passing from any one point to any other lying on the same orthogonal 
curve in the neighbourhood of a finite double layer.

Again, the system D, consisting of — R  and +  C, may be built up by an infinite 
number of finite double layers. Hence by a second integration we may find the 
difference between the potential of D  a t any point inside R  and the point lying on J  
where the orthogonal curve through the first point cuts the surface of J.

Finally, it may be proved that the lost energy \D D  is equal to half the difference 
of potentials just determined multiplied by the density and integrated throughout 
the region R. The required expression of this portion of the energy is found to 
consist of two parts, of which one depends on magnetic moment and the other on the 
force (§ 9). The reduction of this part of the energy to calculable forms is not very 
simple ; it is carried out in |§11, 12.

The calculation of the moment of inertia of the pear is comparatively easy, since it 
only involves those harmonic inequalities of J  which are expressible by harmonics of 
the second degree (§ 13). On multiplying the moment of inertia by JSco3, we obtain 
the last contribution to the expression for

The energy function cannot involve e3, since the vanishing of the coefficient of that 
term is the condition whence the critical Jacobian was determined. I f  f  denotes the 
coefficient of any harmonic inequality other than the third zonal one, the part of E  
independent of Sw3 is found to contain terms in e3, e}f and ( / ) 3. The coefficient of 
8<u3 consists of a constant term, a term in e3 and terms in f  and where these f ’s 
denote the coefficients of the second zonal and sectorial harmonics. This last part 
does not contain the coefficient of any harmonic of odd degree, and in the first part 
the coefficient of the term in e2f  for all such harmonics is found to vanish.

The condition for the figure of equilibrium is that the variations of E  for variations 
of e3 and of' each f  shall vanish. On differentiating E  with respect to the f  of any 
harmonic of odd degree and equating the result to zero, we see that that f  must 
vanish. Hence it follows that the pear cannot involve any odd harmonic excepting 
the third zonal one. Again', the symmetry of the figure negatives the existence of 
any even functions involving sine-functions of the quasi-longitude measured from 
the prime meridian (as I  may call it) of symmetry through the axis of rotation. 
The same consideration negatives the existence of even functions involving cosine 
functions of odd rank. Accordingly the only functions to be considered are the even 
ones of even rank, involving the cosine functions of the longitude.

The equation to zero of the variations of E  for all the excepting f„, f . f  gives 
at once all those f ’s in terms of e2. The equations to zero of the variations for e2, f ,  
f 2 give three equations for the determination of Sa>'2, f ,  f 2 as multiples of e3. W e 
thus have the means of finding the angular velocity and all the in terms of the 
parameter e, which measures the amount of departure of the pear from the critical 
Jacobian ellipsoid (§ 14).

I t  seems unnecessary to give here any explanation of the methods adopted for
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reducing the analytical results to numbers, and it may suffice to say that the task 
proved to be a very laborious one.

The harmonic terms included in the computation were those of degree 2 and ranks 
0 and 2, of degree 4 and ranks 0, 2, 4, and of degree 6 and ranks 0, 2, 4. The sixth 
sectorial harmonic was omitted because its contribution would certainly prove 
negligible.

The expression for Sco2 was found in the form of a fraction, of which the denominator 
is determinate and the numerator consists of the sum of an infinite series. Nine 
terms of this series were computed, namely, a constant term and the contribution of 
the eight harmonic terms specified above. I  found, in fact, that it would only change 
the numerator by about one-twentieth part of itself, if all the harmonics excepting 
the zonal ones of degrees 2, 4, 6 had been dropped.

The result shows that the square of the angular velocity of the pear is less than 
that of the critical Jacobian ellipsoid in about the proportion to 1 —-J-e2 to 1. On 
the other hand the angular momentum of the pear is greater than that of the 
ellipsoid in about the proportion of 1 +  -x-5-c2 to 1. If  this last result were based 
on a rigorous summation of the infinite series, it would, in accordance with the 
principle explained above, absolutely prove the stability of the pear. The inclusion 
of the uncomputed residue of the series would undoubtedly tend in the direction 
of reducing the coefficient given in round numbers as -y-5-, and if it were to reduce it 
to a negative quantity, we should conclude that the pear was unstable after all. 
The apparently rapid convergence of the series seemed to render it almost incredible 
that the inclusion of the residue could bring about such a reversal of our conclusion, 
yet I thought it advisable to make a rough estimate of the amount of change which 
would arise from the contribution of the eighth zonal harmonic.

The contribution of the sixth zonal harmonic to the series above referred to was 
about 00006, and I find that if the contribution of the uncomputed residue should 
amount to 00014, the apparent stability of the pear would be just reversed. Now 
my estimate of the contribution of the eighth zonal harmonic to the same sum is 
‘0000008, or only yyyth  of the critical amount.

Since the convergency of the series is obviously very rapid, it is wholly incredible 
that the inclusion of the uncomputed residue could materially alter, much less 
reverse our result. 1 regard it then as proved, but by something short of an 
absolute algebraic argument, that the pear-shaped figure is stable.

The numbers obtained in the course of the determination of the stability afford 
the means of giving a second approximation to the form of the pear. The result is 
shown graphically in the figure of § 20, where the largest value of e is adopted 
which seemed to secure a fair degree of approximation in the result. I originally 
called the figure pear-shaped,” because M. P oincare’s conjectural sketch in the

Acta Mathematica was very like a pear. In the first approximation, shown in my 
foimer papei, the resemblance to a pear was not striking, and it needs some imagina
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tion to recognise the pear shape in the second approximation shown here ; but a 
distinctive name is so convenient that we may as well continue to call it by that 
name.

The effects of the new terms now added are almost entirely concentrated at the 
two ends. All these terms, excepting a very small one arising from the second 
sectorial harmonic, tend to augment the protuberance at the stalk and to fill up the 
depression at the blunt end. I t  is true that there is a small term, arising from the 
square of the third zonal harmonic, which diminishes the protuberance and increases 
the depression, but this cannot be regarded as a new term, since it only represents 
the effect of the fundamental harmonic carried to the second order of small 
quantities.

The new zonal harmonics furnish by far the most important contributions. The 
second zonal harmonic denotes that the ellipsoid most nearly resembling the pear is 
longer and less broad than the Jacobian. The largest contribution of all is that 
due to the fourth zonal harmonic, and this may be regarded as the octave of the 
second zonal term. A rough estimate shows that the eighth harmonic, or the double 
octave of tbe second, is still sensible. The sixth harmonic is the octave of the 
fundamental third zonal harmonic, and is the last of the three important terms.

The general effect is that the protuberance at the stalk of the pear is much 
increased, and the depression at the other end nearly filled up. Over the greater 
part of the whole surface the depressions and protuberances are less conspicuous 
than they were. The nodal lines where the surface of the pear cuts that of the 
ellipsoid are entirely shifted from their former positions. It did not seem worth 
while to attempt to specify their new positions, because the choice of the ellipsoid to 
which we refer influences the result so largely. The ellipsoid on which these figures 
are constructed is that which is called J  in this summary. Its volume is a little less 
than that of the pear, so that the protuberances are a little greater in volume than 
the depressions.

I think it is hardly too much to say, that in a well-developed “ pear the 
Jacobian ellipsoid has nearly regained its primitive figure, but subject to a small 
tidal distortion due to the attraction of a protuberance which it shoots forth at 
one end. I venture to give here a conjectural sketch of a further stage of the 
development.

Conjectural Sketch.

If we look at this figure and at those drawn by Mr. J eans in his striking 
investigation of the parallel changes in the shape of an infinite rotating cylinder 
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(s pra,p. 67), we can hardly fail to be reminded of some such phenomenon as the
protrusion of a filament of protoplasm from a mass of living matter.

N otw ithstand ing  th e  caveat which M. P oincarE en ters  as to  th e  dangers of 
applying these resu lts  to  heterogeneous masses and to  cosmogony, 1 cannot restrain 
m yself from joining him  in seeing in th is  alm ost life-like process a coun terpart to a t 
least one form of th e  b irth  of double stars, p lanets, and  satellites.
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N ote.  Erratumm u Ellipsoidal Harmonic Analysis, Phil. T ians., A, vol. 197,
p. 512, line 4 from foot. The first term inside the bracket should be negative. 
The mistake runs on and the same correction should be made in equations 
(62), (63), and (64), and in line 9 on the following page.


