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VII. The Stability of the Pear-Shaped Figure of Equilibrium of a Rotating
Mass of Liquid.

By G. H. Darwin, F.R.S., Plumian Professor and Fellow of Trinity College,
in the University of Cambridge.
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Introduction.

By aid of the methods of a paper on * Ellipsoidal Harmonic Analysis” (*Phil. Trans.,
A, vol. 197, pp. 461-557), | here resume the subject of a previous paper (‘Phil. Trans.,
A, vol. 198, pp. 301-331). These papers will be referred to hereafter by the abridged
titles of “ Harmonics” and “ The Pear-shaped Figure.”

At the end of the latter of these it was stated that the stability of the figure could
not he proved definitely without approximation of a higher order of accuracy. After
some correspondence with M. Poincare during the course of my work, I made an
attempt to carry out this further approximation, but found that the expression
for a certain portion of the energy entirely foiled me. Meanwhile he had turned his
attention to the subject, and he has shown (‘Phil. Trans.,” A, vol. 198, pp. 333-373)
by a method of the greatest ingenuity and skill how the problem may be solved. He
has not, however, pursued the arduous task of converting his analytical results into
numbers, so that he left the question as to the stability of the pear still unanswered.

M. Poincare was so kind as to allow me to detain his manuscript on its way to the
Royal Society lor two or three days, and | devoted that time almost entirely to
understanding the method of his attack on the key of the position—namely, the
method of double layers, expounded in my own language in § 9 below. Being thus
furnished with the means, | was able to resume my attempt under favourable
conditions, and this paper is the result.

The substance of the analysis of this paper is, of course, essentially the same as his,
but the arrangement and notation are so different that the two present but little
superficial resemblance. This difference arises partly from the fact that | desired to
use my own notation for the ellipsoidal harmonics, and partly because during the time
that | was working at the analysis his paper was still imprinted and therefore
inaccessible to me. But it is, perhaps, well that the two investigations of so
complicated a subject should be nearly independent of one another.

It is rather unfortunate that I did not feel myself sufficiently expert in the use of
the methods of W eierstrass and Schwarz to evaluate the elliptic integrals after the
methods suggested by M. Poincare, but every exertion has been taken to insure
correctness in the arithmetical results, on which the proof of stability depends. My
choice of antiquated methods of computation leaves the way open for some one else to
verify the conclusions by wholly independent and more elegant calculations. It is
highly desirable that such a verification should be made.

As the body of this paper will hardly be studied by any one unless they should be
actually working at the subject, | give a summary at the end. Even the mathe-
matician who desires to study the subject in detail may find it advantageous to read
the summary before looking at the analytical investigation.
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PART I

Analytical Investigation.

§1. Method of Procedure.

The pear-shaped figure is a deformation ot the critical Jacobian ellipsoid, and to
the first order of small quantities it is expressed by the third zonal harmonic with
respect to the longest axis of the ellipsoid. In the higher approximation a number
of other harmonic terms will arise, and the coefficients of these new terms will be oi
the second order of small quantities. The mass of an harmonic inequality vanishes
only to the first order, and it can no longer be assumed that the centre of inertia of
the pear coincides with the centre of the ellipsoid.

In order to define the pear, | describe an ellipsoid similar to and concentric with
the original critical Jacobian; this new ellipsoid is taken to be sufficiently large to
enclose the whole of the pear. It is clearly itself a critical Jacobian, and 1 adopt it
as the ellipsoid of reference, and call it J. 1 call the region between and the
pear R. The pear may then be defined by density + p throughout J, and density —p
throughout R.

If k is the parameter which defines its axes are expressed in the notation of
Harmonics” by kvQ, k {vf — )% k (vf —j ~j; or in the notation of the * Pear-

shaped Figure By hjsin ft, k cos /3/sin /3, k cos y/sin /3, where sin /3= siny.
Now let Sfdenote any surface harmonic, so that is the same thing as
[Jh* (x) or P/ (IX)] X [Cf (@ or C,” (<)) The third zonal harmonic deformation will
then be eS3or e]de(jx) C3(¥>), where e is of the first order of small quantities. On
account of the symmetry of the figure, the new terms cannot involve the sine
functions  or S, and moreover, the rank s must necessarily be even.
Suppose that the new terms are expressed by %/fSf for all values of from 1 to
infinity, and with sequal to 0, 2,4 . .. ic — 1. Then all the
exceptingf . which is zero.
We have seen in “ Harmonics,” §11, that if  denotes the perpendicular from the

centre of the ellipsoid vOo to the tangent plane at /x, ¢ the equation to a harmc
deformation of the ellipsoid is

30 - W= 2
Since this equation may be written in the lorm
Q2
+ + “ = 1+ 2esf,
1+8\ ~ Wi)
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it is clear that if 2eSf is a constant, say c, the surface defined is an ellipsoid similar
to the surface of reference, with semi-axes augmented in the proportion of (1 + cf to
unity.

I now replace the variable v by a new one, namely,

r T T T w

The negative sign is taken because the points to be specified will lie inside J.
Then r = ¢, a constant, defines an interior ellipsoid similar to and concentric with J.
The equation to the pear may now be written

t—C—eST— 1

Th only condition which has been imposed on c is that it shall be great enough to
make r always positive.

In order to solve our problem it is necessary to determine the energy lost in the
process of concentration from a condition of infinite dispersion into the final con-
figuration. This involves the use of the formula for the gravity of J, inclusive of
rotation. It is well known that this formula is simple for the inside of J and more
complicated for the outside. Since the whole region lies inside J there is no
necessity in the present case to use the more complicated formula.

The final expression for the lost energy cannot involve the size of J, the exterior
ellipsoid of reference, and therefore the arbitrary constant ¢ must ultimately disappear.
It is therefore legitimate to make c zero from the beginning.

It is clear that we might with equal justice have discussed the problem by means
of an ellipsoid which should lie entirely inside the pear, the region between the pear
and the ellipsoid would then have been filled with positive density, and the formula
for external gravity would have been needed. The same argument as before would
then have justified our putting the constant c equal to zero.

We thus arrive at the same conclusion as does M. Poincare, namely, that it is
immaterial whether the formula for external or internal gravity he used.

I now revert to my first hypothesis of the enveloping ellipsoid, but put ¢ eqt
to zero from the first. In order, however, to afford clearness to our conceptions, |
shall continue to discuss the problem as though c were not zero and as though

enclosed the whole pear. With this explanation, we may write the equation to the
pear in the form

8 2. The Lost Energy of the System.

Ris transported along tubes formed by a family ot
orthogonal curves and deposited as surface density on J.we. may refer to such a
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condensation as — @ do not suppose the condensation actually effected, but
imagine the surface of J to be coated with equal and opposite condensations + C
and — C.

The system of masses forming the pear may then be considered as being as
follows:—

Density + p throughout J, say -f- J.

Negative condensation on ¢/, say — C.

Positive condensation + C on J and negative volume density —p throughout
This last forms a double system of zero mass, say D, and =

Let Vj, V, be the potentials of + J and -f- R, and Vj_rthe potential of the pear.

An element of volume being written do, let %dv, . dv, S do denote integrations
throughout J, R and the pear respectively.

Let d be the distance along the z axis from the centre of the ellipsoid as origin to
the centre of inertia of the pear; let abe the angular
Jacobian about the axis x, so that a22irp= T4200; and let o3 -(
of the angular velocity of the pear. Lastly, let M be the mass of the pear.

Then the lost energy E is given by

E= if Viapdv+ i (»*+ S&N)TF [/ + 2- <08
Jj-r Jj-r
Now f zpdv — Md, sothat f (—2 = —
Jj-r *]—t

Again, since

Vi-r=V - V,, L_F- fJ.J_' er. fjtv,pdv= Jfr Vjpdyv,

we have
LI Vjmpdv =[] Vjpdv —| Vjpdv + |
Also
N8+ 8wd| [y3+ (z —0)J pdv = 4981 (y3+ pdv— ] ( 3+ %)pdv
J- iSW3J_ (y3+ pdv —| &8+ So
j-r

Hence
E=hf; vis @ (7] + )pdv - [ [V] + (y* + 9] pdv +

+ TSo3f (y3+ pdv —i &3+ Sw3 Md2
Jj-r

As the several terms* will be considered separately, it will be convenient to have an
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abridged notation to specify them. | may denote the lost energy of J, inclusive of
rotation, by U;the mutual lost energy of J and of the region consid
filled with positive density, by JR ; the lost energy of the region R by IRE.

The moment of inertia of the pear is A ,anc
inertia of J less that of E.

Then
E=\JJ - JR + %RR + | A An 3-i(co2+ M
where

JR —Jf [F#+ ~W + z"pdyv,
r
Aj= [ (y~ + z2pdy, A.= (f

and

\RR= f Vipdv.

r

If hDD denotes the lost energy of the double system described above, we clearly
have
\RR —\(C—R)(C—R) ACR—CC=\DD + CR- \CC.

We require to evaluate E to the fourth order; now d is at least of the second
order and d2 of the fourth order; hence .Sod is at least of the fifth order and

negligible.
Hence, finally, to the required degree of approximation

E=\JJ- JR+CR- \CG+ DD + t(A-- AT

It will appear below that d is not even of the second order, so that the last term
will, in fact, entirely disappear, although we cannot see at the present stage that this

will be so.

8 3. Expressionfor the Element of Volume.

The parameter /3 of “ Harmonics ” is connected with « of the “ Pear-shaped Figure !
by the equations
W tp ' -1+ k¥ +
There will, 1 think, be no confusion if | also use A illa second sense, defining it by

the equations
sin A—#ny, cos3/3= 1— sin2y.
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It has already been remarked above that the squares of the semi-axes of J are

_ I? cos2 1+6 k3cos37
&B= Gina” sinv3 * (’2'1, 0 sin3/3 *

The mass of J is then m;?kz m3/3 7

I now take the mass M of the pear to be

Thus k@s a constant which specifies the volume of liquid in the pear, and the mass
of Jis M (k/KOF.
It will be convenient to introduce certain new symbols, namely,
A3= 1—/2sin28, T2= 1 —K3cos3 (3
AX3 — | —Kk3sin3y sin26, Fp — c0s3y + «'2sin2y cos2<

where sin 6 is the p, of “ Harmonics.”
The roots of the fundamental cubic were and -— and in the new

notation they are v sin30, -—

. we now have
slnce 7e* =

2 2 ,@P_Q 1—0cos 2(f>_  Tj2
0~ A Sin2” Vo ~ 1-/3 sin2 ¢

The expression for p0 the perpendicular from the centre on to the tangent plane
at 0, @& is given in (49) of “ Harmonics,” namely,

V3 VoW - H(V - 0) cos3ft cos37 1 n
V' o IV - 1—1/300; A0 sin2 13 Aj2Tj2 * '

Also by (50) of “Harmonics ” the element of surface of the ellipsoid is given by

cos 2(p

-J
Vo der . . 1-/3
dodf) = kK \W -('(><? ~ 2 Hk)" /1 - Ocos 2<y /1 + _ o
1-0 1-0
Passing to the new notation this may be written
pOda- _ 3 M/ k§ 1 —/2sin20 —J cos2&_ 3 [ k\3 Agar,2 /1
dj) ~ 4d>\A0/ Ar _ AT\ &,/ AT sin27\rx AR

VOL. CC.— A. 2L

]
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The new independent variable r is to replace v; it was defined in (I) by

T= w - O.

and in accordance with (2) the equation to the surface of the pear is

t = — eS3—1
From (4)
2 "' t |/ 2t c0s25 cos27\
2 = P ~1f7=1r -~ Y
For brevity I now write
2 tcos2/3cos27 ,,
D= e * S0 that
—_ 1 —_ N —_
= U (1- T) J2- 1= (1 - Tosec2/3), \2- 171, = . o(1- TXec2y),
9 2 /1 Ti 2 1—ftasxr_  r,2 / _Ti\
N8 il VT 1- /3 “ sin2 1 “ iy/
1 —yBcos XE 2 1—/@2sin20 —K2cos2<f  AlXi2/ 1 1\
1—\3 A k~ sin2y8\ri2  Aj2
Therefore
r2- 1 D 1. T
( AL D Fo
) ] ] sinf3cos /3cos7 (1 —Tj)* (1 —exsec2/3f (1 —uxsec27)
'V o-vit-i-zifr
If we write

G= 1 (1+ sec2/3-f sec2y)

17= | (1 + secd/5+ secdy) + i (sec2y5+ sec2y + sec2ySsec2y),
this expression, when expanded as far as t,2 becomes
Aixil_
sin yScos y3cos 7

s 1 -f— —11
N2 pjzj2 AeT Fj
The arcs of the three orthogonal curves were denoted in “ Harmonics,”
where dn was the outward normal. Since in the present case we are measuring r
inwards, the element of volume dv must be taken as —dn df.
The equations (50) of “ Harmonics ” give
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—cos 0 vdv do df>: F

v (ir —1)5(w

But
7

(v

1+ /3\a

€0s3/3 cos37

cos/3 cos7 ANN3/ "1

dr d6 c)

** sin3/3sin27 AT \jV *“

A 1-

\

Ou comparing this with the expression for

qﬁ:DQd(f 1 Tifape R —

1 —/3cos 2
P 1-/3
«/l + I3
fi)yr{rzrp - 1

259

VI —B cos X)
1-/3 -
h/l —/3cos 2({h*
1-/3 o

K;&agd therefore "

T(i? + i™ -

1 /1

ApFp "m ™ (aX+ rp7 7/

we see that

Aprp @) (yTi2g 17 (—r+ &P+ ini) —i1

Another form, which will he more generally useful, is found by substituting for r:

its value; it is

3 My rA2- Fp _ cos2ftcos27 1 _ J_ 1 1
crdodf>  iirp \k{ sin27 sin27 m“ Ap 17 Aft,
cos4 ft cos47 f 1 1 1
— 4r -1 11
3 sin27 L \riAp rpAf tG FpAp FpAf rpAft  rpAp, JAF
I 1L order to express this more succinctly let
AT sin37 9
N 6 cos3ft cos37 "1 J_ i
* sing7  JY ~ A4 s( 1>~ aVlAF
6
6 Cos4/3 cos47 1 1\ ° (©)
T sin37 rpAp  rpAft, TS OFftaft  rftAft
1 1 1
rftAft  FRtAft/_ AF
We note that
pd * M/k\W» _
C/o d(> 8 yw\*0
(6).
IF = QOS2 ft OBy (pb;q Ap Aprd®
Then
do » MYKY s~ ouF - arm) ).
dr do d>~8 UO

2 L2
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The surface r = constant is an ellipsoid similar to J with squares of semi-axes
reduced in the proportion 1 —2r to unity. Therefore the volume enclosed between
the two ellipsoids is

f*x =2(£)'[1- (I- *m»=f (£) [Br- **~

But taking the limits of 6 and +as t
octant and multiply the result by 8, we have another expression for the same thing,
namely,

fob’ = jj [&T~wE2—|Dr3 (16df.
Therefore equating coefficients of powers of r in the two expressions,

i<t d$dp= 3,  jj'P dd d(f)— -f2 dd d(prm=

The first of these will be of use hereafter, and all three afford formulae of verification
in the numerical work.

8 4. Determination of 1cDefinition of Symbolsfor Integrals

The pear being defined by t= —eS3—ftw ith all the s of order €3
excepting f which is zero, we have at the surface of the pear to the fourth order
T*= e3(S33+ 2 tefing +
T*= -e(S,y- Stefs( S t f S
.

In all the integrations which follow, and especially in the present instance in the
determination of the volume of the region D, it is important to note that < T, Il are
even functions of the angular co-ordinates, and that therefore the integral of any odd
function of those co-ordinates multiplied by any of these functions will vanish.
When the odd functions are omitted we may integrate throughout the octant defined
by the limits 4# to 0 for 0 and <& and multiply the result by 8.

Then, only retaining terms as far as e3 we may in finding the volume R take

r= — Bonly even,
r3= e3(S.f1+ 2te? $Sff, i only odd,
3= 0.

To the cubes of small quantities we have, therefore,
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r M/ k\3ff
j*r =7 \k ) N w + 2Sed “sS3s.')] cie
ihe first term vanishes because >¥ is a surface harmonic and is proportional

to ptflcr.
Thus we are left with

e GGrate e e L

I now introduce symbols for certain integrals, and in order to bring all the
definitions together | also define several others which will only occur later.
Let

= || P (Sfd(™>

(of= || M(SsySisdd df> (8).

€0s2/3 cos27
sin/3

All these integrals vanish unless i is even. For immediate use | also introduce
xas = || 'P/S3Sisdd df>

The @ integrals vanish unless i is odd, but it will appear later that they are not
actually required.
| further write

= \[v (S3y dd &&= ffa (S3 dd
6 €0s3/3 cos37 sin /3 (®)
da= — sin27 ffjvViy A2 jG(at* \Ml daa(>
With this notation we have at once to cubes of small quantities,
fpdv = —M =) [ev3+ 2tefisqig 9).
But before using this | wil] obtain another integral to the fourth order. It is
rpdv=M (~j3ff [e2(Ssy + 2 te+t (S/")J
+ i* [>3(S33+ 3 W #'] - (S,)3 dd dq
Omitting terms which vanish, amongst which are integrals of the type we

have
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ANTpdv =i M (~1J + + .. (10).

Returning now to the determination of the mass of + R, and observing that the

mass of the pear is equal to that of J —R we have
M= M1 + e+ 2tefr
Therefore
(it)3= 1+ ea~+ + eds

A term e4S of the fourth order has been introduced, but it will appear that it is
unnecessary to evaluate it.
There will be frequent occasion to express in terms ofkj Now

(U= 1-1 [eVa+ 22 e

But this will only be needed explicitly as far as e3 and to that order

(13)5= 1~ e, Co.
It is, however, necessary to determine f (~ j —| (Jpj to the fourth order.
Now
i(Ef =1 {1- I [eS + 22e/W + e'S- fe*(a
t (gri=t g d [+ 22+ - |01

Hence to the fourth order

It will be observed that the mpintegrals and 8§ have both disappeared.

5 The Energies \JJ and Jit.

R cg, A, ¢, are the semi-axes of a Jacobian ellipsoid of mass and angular
velocity oo, its lost energy, inclusive of rotation,

i-o-Mj2 \v . h2+
1+ a; °

where is the usual auxiliary function.
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The equations to be satisfied by the ellipsoid afford expressions for odfg2 and aPcf
in terms of differentials of 'S If these expressions are added together, ad may be
eliminated, and the expression becomes

(NT
¥ + «1 dax

In reverting to the notation adopted here, 1 remark that [J/, will be used to
denote those functions when the variable is v0 and the variable will only be inserted
explicitly when it has any other value.

In the present case Mv the mass of the Jacobian ellipsoid, is M and it was
shown in “the Pear-shaped Figure ” that

9 2
* = « . £=- fP Qi+ m
Hence

0\ & iJJ=Ar(rfii»i - P/Qil

It was shown in the same paper that the internal potential of the Jacobian
inclusive of rotation, is

Wi Fsn
Therefore in the present case

Vi+ W (if+ Q= f {#,®0- | P,'Q," sin30 (*3sec3y sec30 + z3)j .

But the equation to an inequality on the ellipsoid defined by r is in our new notation

sin3/3 (ad sec3y + yRc3/3+ 22 = F (1 —2r);
therefore

V+ W(E+¥F (- PR+ 2rp 13

Let us divide this potential into two parts, say U) U'\ of which the first is
constant and the second a constant multiplied by t. Also let (JR)) (JR)" be the
two corresponding portions of the energy JR.

In order to find (JR)f we have simply to multiply Uf by the mass of R considered
as consisting of positive density. The volume of R is the excess of the volume of J

above that of the pear; hence the mass of R is M ii) - m

Therefore o
(JR)' = | K_ZI?S h »«©» - PI'Qilr
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Subtracting this from \J J as given in (12),

\ij - (jay = & - Pi'QiY 2'}, 4T

But the latter factor was found in (11) as equal to (oq)2 The term 7
only contributes a constant to the whole energy and may therefore be dropped.

Accordingly :
\ii - 20 fy= f M {- (fo®o - PiQiyf13}

For the other portion (.//?)" we have

Then by means of (10)

) Pi'Qil{er3 + 2 +o*terfiw - 22%) . (14).

In the terms of the fourth order we may put (k/kOf equal to unity. Therefore
combining (13) and (14)
L . M° . .
PI'QiVs+i Jp P Qi)W +ePi'Q.'U

4P I>Q,1Se»/W - W W W (W

8 6. Surface Density of Concentration C; Energy CR.

The region i? being filled with positive volume density p, is concentrated along
orthogonal tubes on to J, and there gives surface density 8.
To the first order, by (5),

civ c0s2 ficos27 /1
(e POCE - 2r e \Ef +

Integrating with respect to r from the pear to J, we have as far as squares of
small quantities

8 PoP 2 €0s3/3 cos37
= ~ Po 2.

el
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It is now necessary to express 8 /ph surface harmonics. The first
already in the required form ; for the remainder let

+ 1
'S? =
Id’aS. Ar 2 \A* 1 r1x

Multiplying both sides by S;st> dd dand integrating, we have
+ A - G)(s3/si‘diN,
i V (SaySfdd ob=

Therefore 17 =and vanishes unless i is even.

When i= 0, \;@)0: and since by (7) 0= 3, and jj.'F(S.tfddd<f> =
we have — Q2.

Hence we have

S= —PoP ess + 2+ ? (e* qt f*)

This is expressed in surface harmonics, the middle term being of order zero.

By (51) of “ Harmonics” the internal potential of 8 is
M i _ oof
K= - 3o(T) () W S, + ieVZX 0ffl0 M SI

We have *e<») = *e- A = ft*-r N * o« But before

proceeding to use this I will introduce a new abridgment, and let

=t/al
(16).
B7= al IO
Then %
v,= -3 JHEY + AIRN+ S G
| \* el
M ( lc\3 cos2/? cos27 el3:; + A( a4+ 33/ AiIR

0\ T sinf ANV
In order to find the energy CR we multiply H by the element of mass

pdv = (N[‘B - 2rTQdr dd &&=

and integrate throughout R.
VOL. CC— A, 2 M
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Now
Bm=-.C {**+ + 2 Hi)*e*
+ 1~ () +iev,alP+s (@* +/e) arts;
MAA5 cos3# cos27 f . #3 , N/ 2@®s

FpE 1) T W - 13 20 +/<]  ApFar

Let us integrate these three lines separately.
First integral

if3fk _ | N
= 3G (n f r iV Bom + t A FWS>S; J\cSt + Sfts?} did
I/Zﬁel o . .
V \h, > gy + (fif mi

Second integral

i MW+ + 45 (i %+)
{e3S32+ 2 HK>
if3fk'
o
Third integral

_ AM2f k \5cos3ft cos27 ff [dS ,
2 ko \ o YKO) sin/3 3 {"23ale# 2 +>2) e Sy

{e3( 9B+ 2 $ef*Sdd c

=i 3 (FT{H(<E+ ) 5l + ZS awle

All the terms, excepting the first of the first integral, are of the fourth order, and
in them we may put (k/k{)bequal to unity.
Therefore
i/12fkV

CR
Vv

+ fT {eATt0 (O 2+ 2 (28>/ + 23/p/)

+ $e2[4(&+ &)< + (23/+ 2BYp/]+ 22{ftfmt} « + « (17).
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87. The Energy \CC; Result for\JJ - JR + CR - \CC.

From the last section it appears that the potential of C at the surface, where
7= 0,1is

= — 3 J (%53+ | 2— |
For the mass of an element of the surface density we have

posd<r = - p f (JY* {es3+ + S(@&"] +1.+) 533 dedt.

These are to be multiplied together and half the product is to be integrated.

Then bearing in mind that ” dd b= 3, we have
MTK\ST .
2cC = *foha( STWrH (09 % + s m

In the terms of the fourth order we put ( )5equal to unity ; thus
+CC- e-m + ¥ (Ma)2 + 2ZeIM W + Z (ffm t\-

Combining this with (17)

¥
CR- \oc=11QJ S w3+ 2(aV + M)A

+ +(#e*+2*w *i+ u/raw m (i8>

We are in a position to collect together all the results obtained up to this point.
Now \JJ —JR, as given in (15), contains P*Qil, » the latter of these is Avhat
is now written M0, and since the ellipsoid is critical = 1P3C3 = 'sly

Collecting terms we find that the terms of the second order disappear, and that

yj- JR+ CR- &7(7= a+ 2£) + £(& >/ + 33/p/) a

+ SeXt [2:&>1 + (Bl + 2333p/]- t (f1)2(% - »/) 4>} = (19).

The reader will recognise that the last term involves the coefficient of stability for
the deformation St It is important to note that if St is of odd order there is no

term with coefficient e ft
2 M2
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§8. The Term - fMcPoT.

In the Jacobian ellipsoid

fr2ic2 d9
13 11/\ = AN + 1/\ daJ

Z+ -

In the present notation this is

i-v/i +epa = *(?A _ [PilQil) = 2(a - fa)-

3if V sin2#

Hence
- iMdv= -1 1 +(MdSi=- (a - We)<l9s
I now make the following definition
= sin (1 — cos2<E
so that 2= kSv

Then

Md sior zpd\jr—\zpdv 72P dv = —}rzp dv

= — M(~Jkfj] <h- 2DP] drdd

=M Bf [©(e$3 + $fisS- 'Pe3(S3J
=M irkfy
Therefore to the required order
iw = - o1 dg,(a- lax/itr e (20).

We again note that this term in the energy does not introduce any term with a
coefficient e~fY Hence thus far the whole energy for harmonic deformations of odd
order is of the form Le4+ M (ft)2

§ 9. Double

It remains to determine the value of \DD in the energy, and for this purpose we
must consider double layers, according to the ingenious method devised hy

M. Poincare.

Let a closed surface S he intersected at every point by a member of a family of

o
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curves, and let a be the angle between the curve and the outward normal at any

point. At every point of S measure along the curve an infinitesimal arc t, and let r

be a function of the two co-ordinates which determine position on S. The extremities

of these arcs define a second surface S',and every element of a
corresponding element da on S'. Suppose that S is coated with surface density 8, and

that S' is coated with surface density —S', where 8da = S da'. The system SS'

may then he called a double layer, and its total mass is zero. We are to discuss the

potential of such a system.

Let UE) and U (—) be the external and internal potentials of density 8 on S,
and Utheir common value at a point P of S. At P take a system of rectangular
axes, n being along the outward normal, and s and t mutually at right angles in the
tangent plane.

In the neighbourhood of P |

U(+)=UO0+nd (+) + SdV(+) +td (+)...

KO I /0 1 O Y I L B R A
In the first of these rd necessarily positive, in the second negative.

Now (+)= -j- (—) = -y ; and the like holds for the differentials with respect

tot
Also by Poisson’s equation

£E(->-£(+> =**nm

Let PP’ be one of the family of curves whereby the double layer is defined, and
let P' lie on S\ so that PP" isr. By the definition of a the normal elevation of S’
above S is r cos a.

Let vOV' be the potentials of the double layer at P and at P'.

The potential of S* at P’ differs infinitely little in magnitude, but is of the opposite
sign from that of S at P ; it is therefore — UQ The point P" lies on the positive
side of S at a point whose co-ordinates may be taken to be

n—r CoS a, S = r sin a, t —0.

Therefore the potential of S at P' is

. Tsill a—_ .
Cr» + tcos “£ (+ ) + as

Therefore
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Again the potential of Sat P is
has co-ordinates relatively to the n, staxesat ¢
n = —t0S a

since further the density on S' is negative, we have

du , .
V—t cos a — (—§+ r sin a

Therefore

YdU '
vV— V— T oS a , = 47ttS cos
n

The differential with respect to n of the potential of S falls abruptly by 47tS as we
cross S normally from the negative to the positive side; and the differential of the
potential of S' rises abruptly by the same amount as we pass on across It
follows that do the inside of S is continuous with its value on the outside c

The surface S to which this theorem is to be applied is a slightly deformed
ellipsoid, and the curves are the intersection of the two quadrics confocal with the
ellipsoid which is deformed. The curves start normally to the ellipsoid, and where
they meet S the angle a will be proportional to the deformation whereby S is derived
from the ellipsoid. It follows that cos a will only differ from unity by a term
proportional to the square of the deformation, and as it is only necessary to retain
terms of the order of the first power of the deformation, we may treat cos a as unity.

We thus have the result

vV — V'— 47rrS.

Suppose the curve PP' produced both ways, and that Afc, T/i are two points on it
either both on the same side or on opposite sides of the double layer.

Let M({M1be equal to £ let £ be measured in the same direction as n, and let £ be
a small quantity whose first power is to be retained in the results.

Let v{ v| be the potential of the double layer at and Mxrespectively.

When £ does not cut the layer we have

. dv

and when it does cut the layer
_ dv
VO — V1—4717—Sﬁ£

In the application which | shall make of this result the surface S' will actually be
inside S.then vOwill denote the potential at any point not lying in the infinitel
small space between S and @nd t\ is the potential at a
inside of the ellipsoid by a distance £; Sis the surface density on the external surface
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S and t is measured inwards. If then we still choose to measure n outwards, as |
shall do, our formula becomes

V0— y vief— = 4300,

according as £ does or does not cut the double layer.

It may be well to remark that v being proportional to to, £ is small compared
with 4#3. It is also important to notice that the term 477x8 is independent of the
form of the surface, and that dv/dnwill be the same to the first or

quantities for a slightly deformed ellipsoid as for the ellipsoid itself.

We have now to apply these results to our problem.

The position of a point in the region R may be defined by the distance measured
inwards from J along one of the curves orthogonal to J. The surface of the pear as
defined in this way is given by e, a function of 6 and & Any point on a curve may
then be defined by se, where s is a proper fraction. If is the same at every point

the surface s is a deformed ellipsoid ; s= 1gives the pear and =
If dcr is an element of area of J, the corresponding element on the surface will be
11— \es) dihe value of X will be determined hereafter, and it is only necessary

to remark that it is positive because the areas must decrease as we travel inwards.
Let s and s+ ds be two adjacent surfaces ; then the mass of negative density
enclosed between them in the tube of which (1 —Xeg dcr and (1 — X (s -j- ds)) da
are the ends is —pe (1 —Xes) da #f this element of mass be regarde
surface density on shat surface density is clearly —peds. If the same element of
mass were carried along the orthogonal tube and deposited as surface density on
that surface density would be —pe(l —Xeg. The sum for all values of s of all such
transportals would constitute the condensation — C already considered.
The double system D consists of the volume density —p in R, and the positive

condensation + Qo J ,the total mass being zero.
Let z a proper fraction, define a surface between J and the pear. Consider one of
the orthogonal curves, and let VOle the potential of D at the point

curve leaves J and Vz the potential at the point Q where it cuts z. Then | require
to find V0O—Vz

: . : I .
Since s denotes a surface intermediate between J and the pear, (—(VO—Vz) ds is

the excess of the potential at P above that at Q of surface density —peds on s and
surface density + pe (1 —Xes) ds on J. Such a system is a double layer, but there is

a finite distance between the two surfaces, and the form of »# (FO— Vg will clearly

be different according as z is greater or less than s.

The arc es may be equally divided by a large number of surfaces, and we may take
t to define any one of them. Now we may clothe each intermediate surface t with
equal and opposite surface densities i pe [1 —Xe (s —£)] dt.
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The density + L —Xe (s—B)]
on t -f dt, constitute an infinitesimal double layer; and since the positive density on
each t surface may be coupled with the negative density on the next interior surface,
the finite double layer may be built up from a number of infinitesimal double layers.

Hence (FO— F) dtdt is the excess of the potential at P above that at Q of an

Cvs Civ

infinitesimal double layer of thickness edt, and with surface density pe [1 —Xe —£)]dt

on its exterior surface.
(v

We may now apply the result r{)— vi— -
does not cut the double layer, and it is clear that
d? .
dsdt — inpedl —X e—£)] or O,
according as Z greater or less than t.
In the next place, we must integrate this from = to t— 0, and the result will
have two forms.
Hig, suppose z > s;then for all the values of t, z> t, and the fi
holds good. Therefore
Secondly, suppose z< .8; then from
holds, while from t=zto t— 0, 7>
Is (F° - V¥~ e z = i7MPe~E*“ (sz ~
We have now to integrate again from s—1

From s= 1to s—z z <ls and the second form is applicable; from s =z to s= 0,
z > sand the first form applies.
Therefore

T ez v —47rpe3j [ 71— (sz—" 2] ds

= 4t me(l - 7) - X
= 2npe2 {2z —22—Xe(z—# + V
Finally, we have to multiply —5 (FO0— If) by an element of negative mass at the

point defined by z and integrate throughout R. The physical meaning of this
integral will be considered subsequently.

We have already seen that such an element of mass is given by
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— pdv = — Al — dz
and the limits of integration are z =1toz= 0.
Therefore
it (FO-r,)PD
= tfj~||e 3(1 — Xez)(2z — 72— Xe (z —z2-f jZ3)} dz + ip [jez (1 —Xez) dz

. . dv .
In this expression we neglect terms of the order €5 and note that e32-- is ot

that order.
Thus

\ J(FO—I7) pdv=vp2te J2 7—23—Xe(z+z23— dzda

= 1V 2feS(l — da + ip fe2

the integrals being taken all over the surface of the ellipsoid.

We must now consider the meaning of the integral i f(Vg~ ”~) pdv.

Let Pb a point on J and Q a point in R on the same orthogonal curve.
Let — Je the potential at Q of the density —p throughout R, and — UQits
value at P.
Let Shbe the surface density of the positive concentration on J, its potential at
Q, and WOits value at P.
The lost energy of the double system consisting of — throughout It, and 8
onJ is
N Updv -(- o] WO 8da —8da

This is equal to

-W)pdv -%\(I\-W»)8da.

Consider the triple integral j'j ( UO—IF0) pdv. Here =e(l

UO—WQis not a function of s, and the limits of s are 1to zero. Therefore
WOp dv. =])(UQ-
But 3‘5 (I —Xes) p ds is equal to 8 the surface density of concentration. Therefore

jlI[CO0- 1A} 8da = fj]( - Pdv.

VOL. CC.— A. 2 N
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We may now revert to the Gaussian notation with single integral sign, and we
see that the lost energy of the system is

ud - (w-uy 3

W —Id the potential of the double system at Q, and is therefore V,;
WO0— UOQis the potential of the double system at P, and is therefore VO
Accordingly the lost energy

But

\DD = |[f(FO-V ¢pdv

=1V f(e3- dler + \p

§ 10. Determination of e and

e is the arc of the orthogonal curve from J to the pear.

The arc of outward normal is connected with  and our variable r by the equation

- dn=—— vdv
s)
It follows that

— P~ dr, integrated from J to the pear.
. By (50) of “ Harmonics,” with the notation of § 3 of this paper

ir— (8 '~ IScos 2 (N

1-/3 sin /3
p v _ 1 (vi_ 1+ Cos Y5C0S 7 (1 —T])i (1 —71 Sec2/9)s (1 —rXSe
1-/9

Therefore

1- Ji 1 7Zi
Po AR rls

P (I—T —bscec2d* (L —7 sec27* N M(ae 1R

cos2/s cos27 /1

Aoty \ae™h FB2— *

Integrating this from J to the pear

= 1—T7

o 3c0s2/3 cos27 /
- Po eSs+ NfiS* -f|c AG  \Ae * XAt (22).

We have, moreover, by the formula before integration
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dn= pOI cos2/3cos27/1 , 1
1_T* AT* + v 20 0

Also to the order, zero —n = p(T.

Since — ri what was denoted in § 9 by the element of volume
-(1 + hi) dndcr, and this is equal to

1 cos2 Bos27/ 1 , 1 9rX
POL—=Vzl ATV Uv+f2- g d8dn

\o da da.

But by (5) the element of volume is

1 T cos2VAR7 /2 2
Po Axe \axt F—26

Equating coefficients of r in the two expressions we find

cos2(3cos27 /1 . 1
PoAXT x5 (E>2+1 @ e (23).

§ 11. The Energy 8§7r/r | e3(1 — Xe) da.

From (22) and (23) we have

es = - eW + 3WiStfS! +1 +re“ 2 W

X ="v " A (N +J_)E),
So that

H1- X= - ft3[« W + 3Ser-W «*+ eV V  {3(iv+ 2)“ 8 3 (Ss)-

Again from (6)

Therefore

<b(Ws
Sirp23(1 —Xg)da = —V oy S cosy sin /3 3TV )3 r(y

A 4- .
4c0s2/3¢cos27 r5/1 L I\ 0/7

rc“Avv p Us+ v
2 N 2

dddcf).
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When this is integrated we may put (k/kvf equal to unity. In the integral the

. . . A2 sin23 .9 , o i
first term vanishes, and the secon& term gives — in the

third term we substitute for its value and have

3 M2os3 Bass7 sinft 4ff 1 /J- 3 \Js/1 1 jL Wd
it K sin2 y fl AV \IN2 A /N\*\AT ® A2

which is equal to

1M% 46 coss/3coss7 sinfBIF[5/ 1 1 1 J_ \\ddd<f>
sin2 7 Ni2veajz Tfbj) d TIAY ] AF
By the definition (8) this is equal to — cdcrd.

Hence the required term in the energy is

3 |I/2 sin2 /3 2e2 > —feV4 (24)
2 cos /3 cos 7
§ 12. TheEnergy | €2

It is first necessary to determine dV/dn.

Suppose that the ellipsoid J is coated with surface density S, and that a second
surface is drawn inside J at an infinitesimal distance r, and coated with negative
surface density — S, so that the two form a double layer. Then rS being a function
of the two angular co-ordinates on the ellipsoid may be expanded in surface
harmonics ; suppose then that

IS = i
Consider the two functions

Ve =24/l (rfB—D1r@—| ~j "N (") $*>f°r exlernal space,

V{= p/ (r) aVé),v': for internal space.

Since these functions are solid harmonics, the matter of which Veand Vi are the
potentials is entirely confined to the surface of the ellipsoid, and since they are not
continuous with one another, the ellipsoid must be a double layer.

dv
Now @G«:»<*(—) I+/7y

and therefore
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©H) 4o K)-®ifo |

Hence at the surface of the ellipsoid

ye—y>—2 IN477eS,
But this is the law found in 89 for the change of potential in crossing a double
nce VeM are the external and internal potentials of the double layer
tS
. d _p d
Since dn vdv *

dve dF] dVv Z 4wyo : 1+1) am -
dn  dn  dn 0 R\(V _|)1(>d—l—pj dvo 'ail0 (25)

This result will hold good to the first order of small quantities if the surface be a
slightly deformed ellipsoid, such as was the surface defined by tin §9.

In the elementary double layer t the density was [ —\e (s— dt, and
the thickness was edt, so that the thickness multiplied by the density was
pe2[l — X (s—£)] dtdt. Since, however, we only need this to the first order, we

may take it as pe2dtdt. It will now be convenient to change the meaning of h/ to
some extent, and to write

Thus for the elementary double layer we have

0 TS = p dt dt2

. . . dv
It follows that in applying the formula (25) to determine ~ for the double

system D, we may say that

& dVv _ B« _,)!/«i+w h.m " iST
dsdtdn 7 Vwy ° ° 1-P dv0 dvo

Since the right-hand side does not contain t, we have only to consider the integral
f (dsdt=\ sds=1
Jo J(o Jo 2

Thus, for the system D,

dv
dn

(26) -
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This result may also be obtained as follows  To the first order we may concentrate
the negative density in the region R on a surface bisecting that region. We may
then consider the positive concentration C on and the negative concentration on
the bisecting surface as an infinitesimal double layer of thickness |e. We have seen

that the surface density + (7is —ppeS3 and that e= —peSz (in both cases to the
first order only). Thus the density 8 of + Gi pe
is ; the product therefore rS is ipe3
@®
Hence tS= "pel 0 =\p %hpSp, and thus we arrive at the same r

I now introduce an abridged notation analogous to that used previously, and write

20 o o

We then have by (26) on the last page

(lv. y2W cos/3cos7,, «;
dn # F gn& (26),
where e3= %h‘S ‘.

By (22) to the first order

r=nvw = ¢g> o
Assume then

cos3/3 cos37 (S'.,)2
sin/3  ApTp

Multiplying by €&S° and integrating, we have

Hence

—_ 1 y C2<2
2= We%"ws’ and therefore h’ =

sin 13 £
Substituting in (26)

sin2f3  <#H

@ ™ Ny
=5, 9jz e*Posin ft & 20/8/.
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Since on integration the terms involving products of unlike harmonics will dis-
appear, we have, as far as material,

S
dn t ¥ cPo2 ! {
Now ipPo dar — dO

Since the term which is being determined is of the fourth order in  we may put
k/kQ= 1, and we have

1 dn %f/bVi&ﬁ(/@@kg(N/)z d3

o 09 (27).
IPo (v)—0 and 290= 0, the term in 2 corresponding to i = 0
vanishes.
8 13. Terms inthe Energy Depending the Moment of Inertia.

We have to determine Ar, the moment of inertia of the region R considered as
filled with positive density.

In order to obtain this result, we must express y~+ in terms of surface
harmonics. This was done in 8 12 of “ Harmonics,” but as a different definition of

S2and S| was adopted there from that which I shall use here, it is easier to proceed
ab initio.

Let D2—1—k2 2 and
W =i(l+7-D), 4)»=*1+ K+ D).
For both the suffixes 0 and 2, we have + = 1, and
"2
2 22 & 1—3 q2__py = .
K= 4Pl * =y 29> —h7_ k |%2

In accordance with equation (10) of * The Pear-shaped Figure” | define the
harmonics as follows —

S2= (K2sin20 —qp) ('l — cos2<P,
SI= (f2sin26 —ql) (fl —K2cos2H
y2Z 1d( v2—1) cos26 sin2 Jcagin2 6 — cos2f),
1 r, 2t cos3ft COS27

and, = inp-Where T=— w .
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Thus
sin2 6’""' @
= cosdt—r, + sinZtsin20 — (cosAt—tQ cos +
Let us assume, as we know to be justifiable,
SRU(F+%) = as +bsj +C
= - [A&Yo* + BfeVv,2- C]+ [A/,'+ B,//] sin26
+ [Ar/@-f B W2cos2 —J[A

If we equate the coefficients of sin26 and cos2(j) in these two expressions, we have
Aq'f + BqV2= sir|1<22ft ’ ﬁi‘ngw“ B 2 T\ ~ cos2ft
The solution of these equations may be written
cos2ft aRft Ti

— T\ —
2%/ D+K 2 ’ B = ~ 2Rqd 1+ b. w T aug

i .
The simplest way of findihg C 13 to put sin20 = %2 cos2<>= g+ S0 that
S2 —$2= 0; we thus find
C = i(l + cos2ft) — fiq.
Now for brevity write

sin ft /N cos2ft \ M sin ft cos2/3 \
4:Dglcosftcos7\ ~ R+ K’ 4:Dq|cosftcos7\1+ J) —K2

We then have

cos /3 cos}y B= - 2 M +

A — . rv
sin /3 ® sin /3 2047’

Hence, substituting for «1its value,

t+ | = 2 (ESs _ A/ISh+ 1 = >
3sina2ft
C0S2 ftcose7 / 1 3 1 Nm 2]
N © Dsinft VIR AiZ2 ['2AM] T 1 AN/
ow

= j *($<.*_**)-

Therefore
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Qf +22p
dr dd ML
cos /3 cos 7 .
—AT na {IKS,-MVS *)-2rif2<F
cos3/3¢cos37 /1. 80 1 M ’ 47) * |1
bs2/9 \2V

When we integrate throughout the region A the limits of r are —e$3—S/4S'/ to
zero.

Accordingly
A =ML sin3/3 e'53 +
+ 2SSgf* (»* - M*8J) + *
cos3/3cos37 1 $£3 1 M2 , 47~ &
2D sin3/3 12V AN 3 M B¢t -r 3 \(,‘3'3% d6 &b
- . I L( ~)!i\52003/3cos7 2cos/3cos7 . .1+ cos23
) i 3sin33’
+ 2 (h

2D sin Bpr — 22

The moment of inertia of the ellipsoid J is

1+ cos2/3 _ Kf 1 + cos2/3 » 1+ c0s2/3
sin2/3 M 5 sin3/3 3sin2/3 I *
Also
M2 35sin3/3 3AI3 1 sin3/3

MV'= " 47mpcosBcos 7 2k0 * 27rp * cos /3cos 7 '

Lastly, to the required order we may put (k/kOY equal to unity in the expression
for Ar.

Then
3m gwd (1 + cos3/3)sin /3 NOD) B
2 (A —A g 27rp 10 cos ft cos 7 t o) * 2)
sin3,8
, . 28).
1A3 cosBeos7 (8 ~dot ia 3 (28)

This completes the expression for the lost energy E of the system, which may now
be collected from (19), (20), (24), (27), and (28).
vol, CC.—a . 20
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§ 14. The Lost Energy of the System; Solution of the Problem.

If the several contributions to the energy he examined, it will be seen that if i, the
order of harmonics in fSt,is odd, there is no term with coeffi
follows from the fact that the <uand p integrals vanish for the odd harmonics. Hence,
as far as concerns the odd harmonics, E involves f s only in the form (ff. The
condition that the pear shall be a level surface is that E shall be stationary for
variations of the faand of e It follows that when i is odd fi is
therefore drop all the odd harmonics, inclusive of f, and it is clear that the term
—\Mdraylin E (given in (20)) vanishes to our order of approximation.

For the sake of brevity, | adopt a single symbol for the coefficients of the several

kinds of terms in E  Therefore let

g - o(ps’
A =a»[IM s+ 2£J+ S(»>/ + Wp-)£ -to +iff »A

sin2(3
2 b;=2a.v + (»-+ 2»)) pl- Pt,

V'eo(ad- a|

_ (1 + cos2/3) sin /3
~ 10cos(3cos7 J

_ shisft__ 7
\=Llaj2—Mo2+ , s/3cos 7\q'® qf 3 nef

c= L3,
* = "*f> where w = »l = »HA =
W ith this notation

M2 f B » £.2
JS-tx | Ae*+ 2SB&fi - t C;(f-f + (@+ for+ tf, - »/,

Let us now make E stationary for variations of eand f.
First, by the variation of any f excepting andf f we have

On eliminating all these  we have

E=sY2 4o, SV.QES\/ + 2B,e% + 2B & f,>-

+ A, (@+ lit2+ tfs —h.ff)}
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By the variations of f,,, and e3 we have
+ f+ =0, - dff-~ 1t =0.
A+t 2+ hay BJ% + A
(C,) J & 4TTp
But from the first two of these equations
(Af w2 ¢ W)* BB Alti
a3 G,’ Of 47 Tp
Therefore
0. . (30).
When 8a® has been found, jf2and are determined from
BO 0. C
A =cl+ 4mpoco
(31).

2__ A n ®
.;S = 47p O

A consideration of these formulae shows that it is immaterial what definition is
adopted for any one of the harmonics, provided, of course, that the same definition is
maintained throughout.

In order to evaluate AQ we must eliminate 30/.

Since = $/<&/, 23/ = @/(%VO, 30{ = and

dvb dvO

dvo dvQ cos/3cos 7’
we see that

—_ * 11213
B, = («’ " cos /3cds 71N
Hence

,« )ys Lo, ax»l7>/ , 1 B«* (pl)2 _ 1 l« a.,a | 13]}3 ,U

U] 9
h "B K g B T O e e 8ERH T YedcosT R R

If for brevity we denote this last expression by [f, s], we have

/oo)

+0 — Ci(0')3+ 2C] —iPU + ;[hA]- .

. 7. (@32)
B? = (a*®/ + 4-23>)+ (23i- 2c0y 7 Pi

67 = («3- al) B

We have now the complete analytical expressions necessary for the solution of the
problem.
202
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PART II.

N umerical Calculation.
815. Determination of Certain Integrals.

The integrals &, pF; depend on certain others, namely—

(S3).

After a large part of the work had been done, | found that these integrals tend to
give the required results in the form of the difference between two large numbers,
and that it would have been more advantageous to consider the integrals

(34).

It will he shown hereafter how the group (34) may easily be found from the group

(33), and it may be mentioned that most of the results were determined in duplicate
from both forms.

| proceed then to consider the H, T integrals.

Since A = 1—K2sin2y sin20, Fj —cos2y + K~sin2y cos2  sin2/3 sin2y, we
have

W gn2p MW T
(35).
T2 — — ), cotzy TiE2 + g sin2y T&5

I now write

(36).
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It will be found from Legendre’s tables that for 69° 49'-0, k — sin 73° 54'-2

log F = -4317642, log E - 0355145
log F —2047610, 1 -1875655  (36),
log RO = -2117987,  log = 9-9856045 _

By integration by parts

. -3
= 20 - 0 1 + «*n 2»-2 _ % —4
nt¥ 2 n—1 2 (2n - 1)k3m’
"+ — 2(n—1) 1+ *3 . 2n —3 (37).
T 2n -&‘3 * (2rc,-1)/c'2 0 J
Now write ,
G= " (1 + sec3/3+ sec3dy), IF = ~(sec3/3 + sec3y -j- sec3/3 sec3y).
The values of ft and y are 64° 23"712, 69° 49™0; whence log -8679015,
log H' — D4678555. Also we require hereafter log Il = 17182664 (see § 3).
By differentiation
dAsin6 cos6 Bos33 cosy 2(2n —I)_(IB_ €0s2/3c0s27 2) A7cos2/8cosy  2n—2
d A3 AR A AiDA Ai2»2A
Whence, by integration,
1 I R p— # ]_ZL}Q _12n_2 T — - 1.f, —v @8)jg sec3y IE
On writing —1tany for siny, we find that exactly the same formula holds
good for the Ts.
To apply this to the determination of Hq Tq we note that
nS2= cosdy + sin3y E, T°2= F' —sin3y E. .. (39).
Also n =+ (F - —E") . . . . . (40).
From the formulae given in Cayiey’s ‘Elliptic Integrals’ it appears that
N7 [E'E(y)-F'F EF "R
— ' ! - ! + ?
TS=F o+ Sl S IFE()-F'F(y) W]
Now nS = F, It given in (40), and lldl for = 2,3, 4...are then given

successively by (37).
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Again, II” is given by (41), and the successive nf are given by the general

formula (37).
Again (38) and (39) give

n2 = GtoS - 7(cosZ yF + sin2yE),

2 cos2/3 cos2

|
H = |G n"- HMb+ 4 3300837

and by successive applications of the formula (37) we find the successive values of

I, 1If.
It is convenient also to have the series of H 3 T_2 integrals. These are to be

found from
nf2= nf - sin2/3nf+ Tf2= Knsin2yTfR+ cos2yrf . . (42).

The T integrals may apparently be derived by a similar set of formulae, but since
at each step we divide by K2 a small quantity, all accuracy is rapidly dissipated.
Although we may safely derive one series of T integrals from a preceding one, we
cannot so derive a succession of series, and it becomes necessary to find new formulae.

In order to determine the T integrals, consider the group of integrals

UZn
I'f ite £ cos 7 tan & cos7 nig
we write £ — " m s a—&gs, we mi
1 ro@+ gy*l | .
U — Q0B yBCosa™™1 7J 0 t di

whence, by some easy integrations,

JJ0 = 17 _ 9
2  2C0Sy8C0s 7’

u' =4cos S, (sec33+ A
37
U= 16cosf cos7tSect™ + se°dy + t (sec' P + sec2y + sec2f£ sec2y) + 1].
On expanding ” in powers of k we see that
It, =w; + +~  VIIr+....

When m =0 the U integrals are easily determined.
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The relationship between the successive U integrals is clearly

am
I now write for brevity
X — COs B, = cos z =smy X= L4* Py
It appears that we may put
1 +1 1.3 2w+ 1.2n+3k,4+
To 2.4...2n + X7+ 2 2.4 2a+2.2ti+ 4
2 A i Tr 1.3... 2w —If 122 +1 /0 1.3 +1.225+ 3 .
2 — 2-7/~-" 2(L +:¢) 2.4...2m"I"" + 2.4 2m+-2.2m4 1n
TZ m 13...2n—147 b
1—44y + 21+2 2.4., 2/ 61 '
_om A m 13 .2»—1 . A
Te —I8§xip2 n 21+ .24..2n~C 2 3
By considering in detail the cases where = 0,1 find
+0— 1) i
D 1+i» +5 =1+ CI(l-2p + 2p>), 6,=1-1x;
Co=*+ 2+ ('+i+f)+1
2
= 1+ N+ V) O+ + - Y ¥/>3+ ipd),

c0—1—iX + +"s

By some rather tedious analysis, it may be proved, by considering the manner
which each T is derivable from the preceding ones, that

. L /1.3...2»—3 .\ 1.3...2w-3
™ T—2p\2.4:...2n-2 A2R1+ 2.4..2 —2
h—1+ 7 2 1 n2 R
af— 1- 2X 2n —1 :
Bin= 1- ra,_,+ 2+,, £24»_s+ “;i;;|"i-2+1- )
1 2rik2

K = 1- 2X (1 —)()2&2 2A_ 1 "2



PROFESSOR 6. H. DARWIN ON THE STABILITY OF THE PEAR-SHAPED

ac2

1 1A S BRY*

c2>1 - 17 2\ [ ( X ~' hon 2 - 1CZ>,727

successive applications, starting from the values for n — 0, I find

1.3
L A2 =pA="p(l +p) A6= yp (I +p+ P)
p0 4- p4- ip 4- tp3- "o = 2T778
2TTTTO p(l + P+ ipt+%P + Apd+ Ap")
l- az 1+ X a4: 1+ X+ @(2 aa4"/\

Gis — 14" A4 4" 4)4F A4,
1+ X+ §\2+  + TTM4- A X

1+ BF 7 ~ - P4~ #—ipjl+ P4 r, (1 —ip)

1.3

2 AN 14-p4-|p24-~ 1+ p—p2r

1.3.5

2.4.6p"’|+ P+ V 24-fp34-8(l+p4-ip2-p 3}

1.. T )

o Ppdl 4-p4-fp' 4-yps4- Ap44- 1 4-p+ fp' —ip° —Tfpd ,

2 10PLL+ P+ @ + *P° Ap4+ AP 4- ATi(l + p4*tp24-ip —Mp‘—4pfHI>
- IX. 6,2 1+ X- X, = 14 X+ TX2- X3,

1+ x+ fx2- ix3- i\\ 8= 1+ x4-fx24-7X3—m - 4A
* * */_ +
+ * + 2+ P+ ly
R430t 37v i u
fcfn-p+720 ~ip)+"}

2~4" 11+ P4-|p:4-H 14-p- pA4-~ (I —|p 4-ip2J-
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C -h |
°8 2.4.6"
1.7
lu ~
Cr=7

0= 1- |X+ |X3

1+

) gp l+p+V +v

P+ V s+ V + kj(I

C6 = 7+ X+ [X3- [X3- |X4+ )8

By means of these formulae | then formed a table of the n,

+358A 1+ P+ ° XP3-V +P),

8= 14 X4 yx3-

+ pt+ V

32
+ Apd+ ~ (i + P+ fp3- ip3- 1p9h

2= 1-f X—2X3+ X3 4= 1+ X+ 0 X X3- 23+ X

IX3- fIX4- |XB+ X

T integrals,

corresponding to the critical Jacobian for which y — 69°49/-0, k —sin 73°54'2.

A little consideration will show that if rioKk n f U\n.

the A integrals as defined in (34) are as follows —

Kn=

Hi AL =

- Mil,

.. are a series of n integrals,

Hence by differencing the n integrals we find the A integrals, and similarly the
differences of the T integrals give the ft integrals.

The converse is also true, and by differencing A, ft we return to 11, T.
In this way | obtain a series of values of the required integrals.

It may be that

the last decimal place is erroneous in some cases, but the results given in the following
table are sufficiently accurate for our purpose.

[y
N'Sooov.bmo

NOowoOR~NO

=

VL AC—A

Table of Logarithms of A and ft Integrals.

log A”2

1064412
9-8518424
9-7422028
9-6704204
9-6167543
9-5738269
9-5380322

log Q%

9-3901374
90333614
8-8883413
8-7988101
8-7344878
8-6844351
8-6435159

log Ah.

4317642
9-9779679
9-8168606
9-7230801
9-6573681
9-6068642
9-5658708

log flth.

2047610
9-8993680
9-7729763
9-6930495
9-6345770
9-5884555
9-5503544

log AZ1.

9049643

1696589
9*9187709
9*7896484
9-7062560
9*6454046
9-5977435

log 12

1-0302812
*7715371
6613027
5898109
5366725
4944045
*4594781

2 P

log Ad.

1-4848513
4573383
0641097

9-8771928

9-7667474

9-6909753

9-6339429

log 12h.

1-8667636
1-6492556
1-5528790
1-4886133
1-4398972
1-4005018
1-3669609

log A(h.

2-1218296
8543000
*2747811

9-9969099

9-8443343

9-7467821

9-6770135

log fi6».'

2-7138342
2-5319082
2-4473548
2-3893878
2-3245748
2-2861489
2-2533269

pr+ \
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§ 16. Thelntegrals cr2, cr4, £4

In accordance with equation (14) of the * Pear-shaped Figure” the third zonal
harmonic is defined by

= sin 6 ( k~8N26 — q°) <
where
<f =f[i+ KB- (I - A3+ kJ I 1- 2=
The numerical values for the critical Jacobian are
k2= -9231276, (f = -5746473.
Writing p 2— k3—"3 we have

= (p2— k2c0s3d) y/(I —cos36) (p3+ k3sin3<IV (k3 K3sin3B).

Now let
a= _pi B= 2p33+ p* y = + 2pikKi, 8 —Ki
al — p 'k\ ft= 2j33K3</3 + p 'k ] k3k/4 -f- 2'p2K'L «
and we have

($33= (a —/3cos3# -f-y cos40 — 8 cos06) (a' -(- ft sin3E-(- sindd-f  sin6d).

fhe numerical values of the logarithms of the coefficients are

loga = 9-0843568, loga' = 90496186,
log j8- 9-8835606, log ft 87693310,
logy = -1748006, log = 7-9810798,
log 8 = 9-9305236, log8 = 6'6573112.
Let
] (A2) — —/3A3, + yA4 8a®

~ for n=0, 1, 2.
J (B2t) —after + [3Tay>|- y'ft4, + 8ft|,)

The definition of s2in (8) then shows that

= 1C7 ©-{/(A)(«t)- I(Ad/(«9- Q[AQ/(na)- I(As)/(1i0]}.

In order to find crdand £4 S3nust be raised to the fourth pc
for n=1 2, 3

i (Wi) —«X . — 243\, 4 (2ay - /30 A2w— (2«S -} 2/3y) Alw
+ (238 4- 7)) AL —2ySAI“ + SAR2,
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I(ft2) = + 2afttil +

291

(2aly'+ ftD)ft4, + (2a' S + 2fty’) fi|
+ (2ft 8' + ft?. + 8'ft” + SAA.
From the definitions of cr4, £4in (8), we see that

gr= | catE ft‘U-[/(A,)/(ax) -/(A )I(«)] + 6 [/(ADI(fte)-/(A 6/(fi2)]

- a2 rcf1ay -1(A )IM)TY,

€0s3/3 cos37 sin /3
Gino 7 {f[/(A9)/(a,.,) -1(n,)/(A 9)]

The computations (which were in this case actually made from the corresponding*
formulae involving the 11, T integrals) gave

<, = -0136866, fA= -00009246, <4— -00176135.

These have to be used in a formula which also involves ft:.
P 393 or what should be the same thing, P, QO.
Figure” with y = 69° 49"0, «

Now ft, denotes
The formulae in the “ Pear-shaped

=sin 73° 54,-2, give
P, Q1= -351697,  $8®= -351744.

Thus the two functions, which should be identical in value, differ by 000047. |

think that if | had taken vy —69° 48M997, k — sin 73° 54™225 (the actu
solution for the critical Jacobian, although not fully stated in the * Pear-shaped
Figure ”) this small discrepancy would have been removed. However, the difference

Is quite unimportant, and as ft, generally means P/Q”, | take the former value and
put log ft3 m=9-54617.

With this value | find the required result, namely

A3 ft F17)3+ - K = - *00050012 43).

8 17. The Integrals cd, p/, <

Any harmonic &* where i and s are both even, whether in the approximate form
of “ Harmonics” or in the rigorous form, may be written

S* = (a—hcos26+ ¢ cos46—d cos6d + ee¢) (d + b'sin2(f>\-dsind$>+ d sSin6 + eee)p

Each series is, of course, terminable, the number of terms in each of the two factors
being \i + 1.
For the determination of the o3 p integrals this must be multiplied by (s:).
2 P2

It
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can be seen, without actually writing down the product, how the coefficients will
occur; | write therefore those coefficients as follows —

10 =aa, —al3+ ha, 4= ay+ 53+ ca, = aS-
m0= a'a’, mz= a'/3-f md= «y'+ N7+ mé= a'8" + + c'ft + dw,
Next let
f (A2l) = A —B3A%t+ kMn oo

for n—0, 1, 2.
fo(ftz) “ "b ‘b Wh h~b

Then it follows from the definitions of co/,in (8) that

6cos8Br A j/(AQ/(fl.) -/(A)/(n,) - <?[/(AO/(n2 —/(As)/(n,)]},
TTsmH7

Pi = 6 gingy sinlal/(a)1(0) -/ (A DI(a,)].

It is, of course, necessary to reduce the two factors of S’ to the required forms.
The harmonics of the second order are

SZ= (k2sin29 —q?) (0?— K2cos2<B, = 0, 2),
and | find g® = '3197540, g2 = '9623311 ; whence we may find b, a’, for
these harmonics.

For the harmonics of the fourth and sixth orders | take the formulae of “ Harmonics,”
and attributing to the parameter /3 its value '0399726 (or more shortly '04 in the
terms of the sixth order), 1 reduce (ft), (E/ @ to the required forms and determine

a, b c &, a, b, Bc. The numerical values of these coefficients are
tables of 8§20 hereafter.

It may be well to remark that pOis needed (but not &), and in this case = 1, so
that a=a =1

It seems useless to go in detail through the tedious operations involved in carrying
out this process in the several cases.

Approximate formulae are given for the </ integrals in 8§22 of “ Harmonics.” The

pOdoof that paper is the same as fir/c3' " C of the present one, and

the factor there written M is Id sin3/3 7 _ Hence it follows that

4711\/|| (P/C/)2p dcr of “ Harmonics.”

In order to apply this to the harmonics of the second degree, it must be borne in
mind that a different definition of Sgs = 0, 2) is bei
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the values which would be found from “ Harmonics” without this correction, and if
<, (Bpare the required values, it appears that

KV 4 «V4
72—W] pe2 .

W=M
where a, e a', e are the coefficients specified in § 12 of “ Harmonics.”

The approximate values found in this way for all the ¥integrals are very near to
the more correct values, and might have been adopted throughout without material
error. But as there was not much certainty that the approximation was a good one

—and indeed for S6 was probably bad—I also found all these integrals, excepting
$3 +3 by the method now to be described.
From (6) and (8) it appears that

6 -
-sin3<|f ax2 i, ®ar ®™
If, therefore, we write
[ (Adl) = a2A22— 2a8A|B+ (2 ac+6) —(2 + 2 An+ ...
[(ftd) = a | + 2ab'nlH+ (2ac'+ 62ft4,+ (2 + 26V
we have
H = -1(A 9/(Q-.)].
The following table gives the results for all the <y, p/, (& integrals:—
Tabte of Logarithms of < w, p Integrals.
1 s log <A Approximate 10g 48 jog wj + 10, log  pf+D.
0 o0 — — — 7-63099
2 0 9-00516-10 9-00515-10 7-67371 7-02716
2 2 7-03970-10 7-03973- 10 (-) 5-68193 (-) 5-05256
4 0 9*69080- 10 9*69323 - 10 8*03358 7-35625
4 2 1*72664 1*72729 (-) 8*33367 (-) 7-59132
4 4 3*81541 3*81612 8*29058 7-37446
6 0 9-71219-10 9*69305- 10 7-97301 7-32602
6 2 - 2*20562 (-) 8-72778 (-) 794094
6 4 — 5*29999 9-10094 8-13161

) + ..
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8 18. Thelntegrals B/

Adopting the notation of the last section we have

fj/ (v) = a+ h2- 1)+ c(?/ —I1)2+ d (v2—1)3+
Let v= K Sl yr -, ,and kS§in X, so that at the surface of the ellipsoid where
i =y, we have x —fi-
Then
$/ (v) = a+ hot2X + 0 cotdX + eee
(v0) = a+ hot2 cot4f3+ ...
Now & | +/3\*= Kn cifr sec X dxp
“—D1(WR2 B — K1si
1 (v )1 ( 1. 0\/ (1 —k1sin3yfr) i«
4 . dv
and = ’RWI
a*=[m 1
Hence U = k& not2 + ccot4dB+ ...)21 sec x dyf
o[a + 7 cot2x + ccotlx- «02*

We have, in 8§ 4 of the “Pear-shaped Figure,” the rigorous expression of this
integral for harmonics of the second order, viz. :—

_ K(—293 (1 —q3sin2y)2J E (y) (73) _ OSiE 7 cos 7 (
? 2 Vsinl7 ]9 2/9? Q@— ga2?7)J T

The values of g@3 '/Zhave been already given, and thus all the quantities involved
are known.

The two factors of &/ (viz., 11/ and <}JJ) are given in approximate forms in
“Harmonics,” and therefore, if we made allowance for the different definition of (Ef/
adopted in that paper, we might calculate 8/. The computations I made showed
that the results obtained in that way would have been sufficiently exact, but as it
was clear that the approximation to the © functions was not very close, and as the
computation is tedious, it seemed better to find the by quadratures.

In order to do this | divided y or 69° 49' by 12, and took 5° 49'-" as the common
difference, say 8. | then computed sec + b cot2x + c cot4dx + eee and
sec X H (a+ hcot2x + c cot4dXee-)2f°r values of 0, 8,28 *..128 or y.

As a fact the first five or six values need not be computed because the early values
of the functions to be integrated are practically zero. The ordinary formula} of
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quadratures are inappropriate for these integrations, because the function, say to
he integrated increases so very rapidly. | therefore take an empirical and integrable
function, say which is such that vI2 = uEn = u
applied to U,— v,,ad the result applied as a correction to J In fact t
correction is always very small, and we might well be satisfied to use jv dip, which is
very easy to calculate.

The empirical function v is given by

v— e 5
Then when X = Y, v = ulz;when — and
Jo IOg'W\ '

In all the cases | have to consider the exponential term is negligible, and the

/\12/\
integral is ~  %3.
eun

For the quadratures we have

_ 1Vv3 &c. = Ui
vn— ure- un %,/ 19 UnCl ' : vio= uiz

and the equidistant values of the function, to be integrated (arranged backwards), are

0,0, ui0 M2( )2r9 2 YW\ e | &
un uJ

The first two are zero, the next three or four are found to be sensible, and the rest
are insensible ; hence the quadrature is very easy.

The 33/ integrals are found thus —

v _ » 1 fLg v\ 2&L cot2™ + 3” cotd/3 4-
; 1P/ (v dva  VO0/ sin a+bcot283+cc o t

The following table gives the %/, 33/ integrals *
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Tabie Of Logarithms of the %, B integrals.

i. S. log 21/ + 10. log J3is.
2 0 9-69312 09295
2 2 9-33300 40665
3 0 9-54617 «20467
4 0 9-44928 *28206
4 2 9-25987 41239
4 4 9-06489 *44858
6 0 9-24383 35876
6 2 9-16199 41249
6 4 9-02369 44195

819. Synthesis of Numerical Results; Stability of the Pear.

In the following tables and remarks | collect together some of the results which
occur in the course of the work. The final places of decimals as given have, perhaps,
in many cases but little significance —

(i) 2) @) _ (3)+ ).

: o e | I*, sin2/? \_a Bf
LS <B- log (V- 21,") %= log 6y . ( 3 2cos/Scosy/n ¢ '

2 0 - -141617  (-) 8-1562926- 10 0029865 - -0011976 0017889
2 2 *136417 6-1745705- 10 - -0000247 +0000127 - -0000120
4 0 07033 8-53794 -10 *005214 - -002555 002659
4 2 16978 95653 - *008965 +004390 - -004575
4 4 23558 3-18755 005594 - -002664 002930
6 0 17638 8-95864 -10 004067 - *002384 001684
6 2 20649 1-52052 - -019041 009820 - -009221
6 4 24609 4-69108 032054 - *015232 016822
For all harmonics higher than those of the second degree is the coefficient

of stability. Since in all these cases this expression is positive, the ellipsoid is stable

for all such deformations.
If B8 Ub the energy function for the pear, whose variations for con

moment of momentum are considered by M. Poincare, we have in our notation

U+ 8U= _ij( + 0 (Aj- A) (»s+ &%)

g4



FIGURE OF EQUILIBRIUM OF A ROTATING MASS OF LIQUID. 297

It is easy to show from our analysis that for the deformation/23

Au— 20 {(73. * ymaj s

and that the corresponding expression with tr in place of c3 holds good for the
deformation/AS/.

Forestalling the results obtained below, it may be stated that forf zSz
012
W = {--01433 + -03959} ;
and for/AS'/

QU2
hu= =~ { fif {00015+ -00002}.

Thus in both cases Wipositive, and this shows that the Jacobian ellipsoid is
stable for the ellipsoidal deformations. The fact, that SE (the variation of my
function of energy for constant angular velocity) is negative for the deformation
illustrates the truth of M. Poincare’s remark (‘Acta Math.,” 7, p. 365): “Si au
contraire la rotation de la masse fluide etait determinee par celle d'un axe rigide
(comme dans les experiences de Plateau par exemple), tout deplacement produirait
une resistance passive et I’ellipsoide de Jacobi serait toujours instable.”
| have in (32) written

[ = «2#2 {(*-* + W fV - #« W } o

The following table then gives further stages in the work :—

. S [ %] BtICH.
2 0 *00014032 +00022329 - *12482
2 2 +00000072 + *00000097 - *08059
4 0 +00009937 +00020486 *07705
4 2 +00000276 +00000231 - *000506
4 4 «00000001 +00000001 *0000019
6 0 +00002835 +00003118 *01852
6 2 *00000403 +00000256 - *000278
6 4 *00000002 +00000001 *00000034
+00024190 -*00022329
2[is] = +00027558 +-00024190
"3 (OD2+ 28]~ = - 00050012
+ *00001861
Ao= - -00022454
*
+-
Cf « 00001861
Numerator. .- *00020593

YoL. cc.— A. 2 Q
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The next step is to find

r sin/3 (i coff \ sin# /14 S°*f
Jj 4Dqg/cos/3cos7 \ )+ *2° 4 Zty2cos/3cos7 \ D —«2
where D2= | — /32
The numerical values are logD = 9'9840165, log L  '6454565, log M = '9591960.
From'these we obtain c= L2 ti = MI3B; whence
- - -055837
- +000804
= «031701
Denominator = - *023332

92

In accordance with (32) the Numerator divided by the Denominator is —" "2

and | thus find
, &8

lo« 4 A = (-) 7-94578.

It was found in 8§87 of the * Pear-shaped Figure ” that the angular velocity of the
critical Jacobian was given by 2 T4200. Accordingly, the square of the angular

velocity of the pear being or + So/, we have
a2+ gw2= #3[l — -124314c].
From the formulae (31)1 then find

= '15068e3 [ 2= -508392

p
The other f s@re equal to ,;se3 and are given in the preceding table.
and the definitions of a, b, G ti it appears that the moment of inertia of the pear is

_ 3112 t 0
Al Ar~ 2k 1+ j e*+ all ~ a

With log a = 9-8559758, | find
4 - [1 + -isicnc™].
The angular velocity of the pear is

w02+ 819 = w[l —-062157¢3.
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Multiplying these last two expressions together, we have the moment of
momentum of the pear ; it is

3Mraa>

iTpko [L + 0688542,

It follows that, whilst the angular velocity of the pear is less than that of the
critical Jacobian, the moment of momentum is greater. This result would afford a
rigorous proof of the stability of the pear if the numbers were based on a complete
solution of the problem. But as we have not determined an infinite series of new
harmonic terms, it becomes necessary to consider how the result might differ if the
hitherto uncomputed terms were added.

(BIT )
of and if

A denotes the addition to be made on that account to any of the results as already
computed, we have

If e denotes the uncomputed portion of the infinite series2 j s]+

/ 8tad\ ee3 ’ A/81‘t)2\ 26e3
\drg) 0233327 \®/ 023332 xT42'
Whence
8f2
AlV K + S52)] = £«A = 0)[301"8346¢ee?
Since
fo—-zl SMpc (3B  SST
2— (@ " 4trpC, A C2 47mp C2
A4rQ: X:ﬁa\ e 103Irp ’
— a2 4vp 0-
Then
. 3i¥2a 3ii2a
8337892 + 397472]ec2
A(Aj A1) 2iTpko \ 46 al 3 27 rp[_ :
ZMH (_ 794-0420) ec2
2irpk0
Therefore
A(ft,3+ So>8) = ©[I — -0621568e3 + 301-8346¢ee?]
— Ar-= + -13101068e2 — 794"0420
AY Ar 2irpk0 L ¢ eedl

By multiplication we find that the moment of momentum is

WO [1 + -0688539e2 — 492-2074e2¢],
2irpk0
202
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The coefficient of e2is positive and the pear is stable, provided that
492*2074e < *0688539,

or e < *00014.

Inspection of the table of numerical results shows that the zonal harmonic terms
contribute by very far the larger portion of the sum. Now the sixth zonal term was

[6, 0] + = *00002835 + *00003118 = *00005953.

This is about 2 of the critical total *00014. The pear is then stable unless the
residue of the apparently highly convergent series shall amount to 2j times the
contribution of the sixth zonal term. Such an hypothesis appears profoundly
improbable, but I have thought it expedient to make a rough determination of the
contribution of the eighth zonal harmonic to the sum.

If we take k as equal to unity, Ss= $8(p) C8( )
the formulae (8) reduce to
_ 3 O** (1 + sin3ysinso) coso /c, VACY Jn 7,
7 cosi'll IT- 7 (s den
6 cos97 f*rf*> cosfl IC1»
Ps— 7 siny J0 10 1+ sill27 sin20 A
In these integrals  only enters through (S32or [$3(p)]2[C3(<E)]2
Now
UM 2 [ il 1d ] §

=N where K — *1452.
Hence

Ps sin7
In these integrals
?8 (") = T28 [64355sin8 9—12012 sin6 -f 6930 sin4 — 1260 sin2
[$3 (p)J— (*m— &c0s20 + y cos49 — 8 c0s69,

where a, £, y, 8 have known numerical values.
1he integrations may of course be effected rigorously, but it seemed far easier to
determine them by quadratures. | therefore computed the values of the functions to
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be integrated for 6 — 0,15° 30° 45° 60° 75° 90° drew curves on squared pape
and counted the squares on the positive and negative sides of the axis.

In this way | find logw8= 6765, log ps= 5'653.

The integral ¢s is found at once from 822 of “ Harmonics” with /3 0. This
gives € —1 “+o0r log €8 —9'247.

If P 8f/x) be expressed in terms of cosines of 6 we have

) = a— b©s26 ccos46 — cosG 4* cos86,
where a= 1, b= 18, c = 74'25, d —107'25, e= 50'
Then we may, as in §18, put
u,= P8 (v) = a+ bot2x + ccot4x + d cotOx + ecot8y
As was done in that section, | then computed un and and so found the integral

of the empirical function. The result gave
log &8= 9*191 ; whence logjjg = '370.

It may be admitted that the determination of $f8 B8is not wholly consistent with
that of the previous integrals, since | oidy assume « to be unity in as far as the values
of ab, c, d, eare affected.

Applying these values as before, | find * 3—"[s='197, log C8=8'540, P 8= '000092,
U - 0027, and )

Y
. [8, 0] = ‘00000051, (78"- = ‘00000025.

Hence that part of € (the uncomputed residue of the series) which depends on the
eight zonal harmonic is only about *0000008. The contribution is so insignificant
Compared with the critical total *00014, that | have not thought it worth while to
make estimates for the tenth and twelfth harmonics.

It may then be confidently asserted that the pear is stable.

) ) B
In the course of this estimate we have also found e3—'0027e~

820. Second Approximation to the Form of the Pear.

Extracting the numerical values of the s from our results, we find that the
inequality of the critical Jacobian ellipsoid is

eS3+ e3[75068 S2+ '50839 Sf + '07705 Sx- '000506 S f + '00000019
-01852 Sa—'000278 Sf + '00000034 Sa-— ?S&-f '0027 Ss —. . ]
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In order to give this expression a clear meaning, it is well to define the several s.

= (3sin36 — q3in 6)
where k2 = '923128, g2= '574647
k2= '076872, '425353.
For the other harmonics we have
S* =(a— bos3 0+ cos46 — dcos6 6+ . ..

where the values of a, b, &c., a', V, &c. are as given in the following table — .

i S. a o C d e
2 0 *603374 *923128

2 2 - -039203 023128

4 0 1 5*450 4-901

4 2 - 1*7988 36*006 44-805

4 4 *0839 -7*975 95-574

6 0 1 12-6 29-984 18-834

6 2 -8*4 121-8 439-425 320-523

6 4 3*78 -338*312 3680-303 4482-844

8 0 1 18 74-25 107-25 50-273
i S, ol V. C. d’. e*
2 0 *603374 *076872

2 2 - -039203 *076872

4 0 8036 3718 0280

4 2 -1-0666 1-8135 *1865

4 4 1-0136 -8-0266 8*

6 0 *5989 *6888 «1512 *0000

6 2 -1-1408 1-5349 *4404 0264

6 4 1-0305 -7-704 6-944 704

8 0 1 0 0 0 0

The suiface of the pear is determined by measuring a certain length along the arc
of curves orthogonal to the surface of the ellipsoid.
that that length measured in the direction of the positive normal is

By equation (22) it appears
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20[eS3+ 2 m + ie* 24+ xy(—AZG)(S3]

In order to construct a figure it will be convenient to adopt as unit ol length c,
the greatest axis of the ellipsoid which is deformed. We know that

h 7 T i'n k ¢cos 7 , J1 7 - . )
c=gn 5" A~Aco'tp, — sIn S0 N= GcosA cd—ccosy, and the mass oi

the ellipsoid is f #pc3cos /3cosy. But since the mass of the pear is jnpk{ Cossi/ic;);Y
3
where = k3(1 + ex?), it follows that it is

f#pc3cos/3cosy (1 + +0136866¢3.

Hence the mass of the pear is a little greater than that of the ellipsoid whose
deformations we shall draw, and the protuberances above the surface slightly exceed
in volume the depressions below it.

ccos /3cosy ccos (3cos 7

We have  po= (1 —sin2/3sin2 Of (cos2y + K'2sin2y cosz <f

and the expression for the orthogonal arc, measured from the ellipsoid to the pear, is
therefore

Foveeee , i
¢ ) [2 (1 —sin2yBsin2 PZcos2 y+

1 + sec3(3+ sec3dy)| + tfiS{

PO 683+ \

It appears to me that it will afford a sufficient idea of the corrected form of surface
if I draw two principal sections, namely, first, a section through the axis of rotation
and the longest axis of the ellipsoid, and, secondly, a section at right angles to the
axis of rotation. It is not worth while to consider the third section drawn through
the axis of rotation and the mean axis of the ellipsoid, since it will hardly differ
sensibly from the uppermost figure shown in the * Pear-shaped Figure.”

For the sake of brevity I will call the first and second sections the meridian and
the equator.

The three ellipsoidal co-ordinates v, 6, $0f any point are connected with by
the relationships

= csiny.(kw —1)j(1 —k3sin30f cos §>
y —siny . k(

z= ceny.

The equation to the surface of the ellipsoid is = ~* = gn/'

@— 1)* cos 6
i 0(1
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The equation to the meridian plane in rectangular co-ordinates is simply 0,
that to the equator is x = 0.

In ellipsoidal co-ordinates the equation to the equator is simply but the
equation to the meridian is peculiar, for it is in part represented by 0 = \twand in
part by &— 0.

The curve = 4 1, () —O, which defines the limit b

the equation to the plane has different forms, is clearly the hyperbola

&8 .
73— —3sin3y.

In the region from z = o and x small down to this hyperbola the equation is

0 — ; and between the origin and the hyperbola it is &= 0.

If we follow the arc of the ellipse from the extremity of the c axis we begin with
8— Mt fl= 17 and 8remains constant whilst $>falls to zero.
constant zero value whilst 8 falls from to zero.

On the side of the origin where Z negative, 8 is of
parallel changes.

The hyperbola 8 = \ t, $=0 cuts the ellipsoid so near to t
axis that an adequate idea of the deformation may be derived from the two extreme
values of < namely, 77 and 0. | have also thought it sufficient to compute the

deformations for 8 =0, 30°, 60°, 90°. We thus obtain the following scheme of values
of 8 <together with the corresponding rectangular co-ordinates (with c taken as
unity), at which to compute the deformation —

Meridian (y —O0). Equator (X= 0).
8 = 90°, 4 90%; X — 0 g = 90° (= 90°; 2=1, = O
=0 = O z= -961, x — +096 8 = 60° (= 90°; z= -866, o 8 ©
g = 60° rf>= 0; 2= *832, x= T91 8 = 30° = 0° y== -3374
8= 30° 4>= 0: z= 480, x = 303 8= 0° 4= 90°; 2= 0, y= '432
=0 ¢$=o0 2—0  x= 345

It did not seem to be worth while to compute the deformations due to the eighth
zonal harmonic, since it would be quite impossible to show them on a drawing of any
reasonable scale.

In order to exhibit the magnitudes of the contributions of the harmonics of the
several orders, | give the normal departures Sn at the pointss= -j- 1, x =0,y = 0.



FIGURE OF EQUILIBRIUM OF A ROTATING MASS OF LIQUID. 305

Term of first order . . . S3 + ¢148227c
Terms of second order pro-
portional to €2 . . . . (SsY - -010986
S2 «061844
s2* 000751
s 4 +092715
Si* +000849
s M4 +000000
sa *026647
-V «002011
o4 «000001
184067 - -011737
- -011737
#17233002

The following are then the results for the normal departures at the several points
whose rectangular co-ordinates are specified —

Meridian {y=0).
%s= =+ 1, Xx— 0,rb '1482c-f -1723c2
z=+ -961, x— -096, Bn= =+ -0932c+ -0858c2
z= + -832 x= -191+ -0189%+ -0103c2
z=+ -480, *= -303, = T '0223c - -0033c2
« = 0, X —-345, Sn — + *0046e2
Equator (X=0).
z = 1, y — 0, i *1482 + *1723e3
z =+ -866, y= -216, Sn = = -0300c + -1265c2
z=+ wy— -374, sn = T -0354c - -0220c3
2= 0, y —432, Sn = - -0095e2

In order to draw a figure | take e = = Throughout most of the arc of the
ellipsoid the approximation is probably good, but at the vertices, which are just the
points of most interest, it is pretty clear that we are using a somewhat extreme value
for e, The results are

VOL. CC.— A. 2 R
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Meridian {y—0). Equator (x=0).

7= 1, X =0, Sn= + *117. Z= V y = 0, Sn— + *117.
z = «96, X = *096, Sn = + -068. Z =366, y= -216, Sn = + -047.
z= 83, X = *19, Sn  + -012. z— 8 =8 sSn= - -014
= *48, oo = 92 Sn = —-on. zZ= o = 98— Sn = — -002.
zZ— 0, X — 345, Sn = + -00i. z= — %, y= -374 Sn= + -003.
z= — -48, x— ‘30, Sn + -010. Z= — 866, y = '216, Sn + *017.
Z= — '83, x= ‘9, Sn — -007. 7= —ijy y = oh = — -031.
z= — '96, X —096, Sn — — '025. N.B.—For z = + *866, Sn in both
zZ= . 1, x =0 Sn —-03L cases positive.

These numbers are set out graphically in the annexed figure. It will be noticed
that whereas the protuberance at the positive end of the z axis is great, the

B

Second approximation to Pear-shaped Figure. Upper section “equatorial,” lower ““ meridional.

deficiency at the negative end is almost filled up. We may describe the general
effect by saying that the Jacobian ellipsoid is very little changed, excepting at one
end of its longest axis, where it shoots forth a protuberance.

Summary.

If a mass of liquid be rotating like a rigid body with uniform angular velocity, the
determination of the figure of equilibrium may be treated as a statical problem, if
the mass be subjected to a rotation potential.

The energy, say IT, lost in the concentration of a body from a condition of infinite
dispersion is equal to the potential of the body in its final configuration at the
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position of each molecule, multiplied by the mass of the molecule and summed

throughout the body. In the system, as rendered statical, it is necessary to add the
rotation-potential to the gravitation potential before effecting the summation. That

portion, say T, of the whole lost energy which arises from the rotation-potential is

simply the same thing as the kinetic energy of the mass, when the system is regarded

as a dynamical one. If we replace W-T by E to denote the wh
the statical system, the condition that the surface shall be in equilibrium isthat the

variations of E for constant angular velocity shall be stationary. E must then be a

maximum or a minimum, or a maximum for some variations and a minimum for

others. _

It might appear at first sight that the condition for the secular stability of the
figure is that E should be a maximum for all variations, and this is so if certain
constraints are introduced ; but in the absence of such constraints the figure may be
stable although Bia minimax.

It has been shown by M. Poincare that the stability must be determined from the
variations, subject to constancy of angular momentum, of the total energy of the
system, both kinetic and potential. The two portions of the total energy, say U, are
again W and T ; but whereas E involves the lost energy W of the system under the
action of the gravitation potential, U involves the potential energy which is equal to
—W. Thus Uisequalto —W + T.

The variation of U with constant angular momentum leads to results for the
determination of the figure identical with those found from the variation of E with
constant angular velocity. But there is this important difference, that to insure
secular stability U must be an absolute minimum. It appears, in fact, that, in the
case of the pear-shaped figure, while E is actually a maximum for all the deforma-
tions but one, it is a minimum for that one, which consists of an ellipsoidal strain of
the critical Jacobian ellipsoid from which the pear-shaped figures bifurcate (§ 19).

But M. Poincare has adduced another consideration which enables us to determine
the stability of the pear by means of the function E, without a direct proof that U is
a minimum for all variations. For he has shown that if for given angular momentum
slightly less than that of the critical Jacobian ellipsoid, the only possible figure
is the Jacobian, and if for slightly greater angular momentum there are two figures
(namely, the Jacobian and the pear #), then exchange of stability between the two
series must occur at the bifurcation. If, on the other hand, the smaller momentum
corresponds with the two figures and the larger with only one, one of the two
coalescent series must be stable and the other unstable. Now it has been proved
that the less elongated Jacobian ellipsoids are stable, so that if the first alternative
holds the stability must pass from the Jacobian series to the pear series; and if the
second alternative holds the pear series must be unstable throughout. The question

* For the sake of simplicity we may speak of a single pear, instead of two similar pears in azimuths
180° apart.

2R 2
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of stability is then completely determined by means of the angular momentum of the
pear ; if it is greater than that of the critical Jacobian the pear is stable, and,
if less, unstable.

It suffices then to determine the figure by means of the variations of E with
constant angular velocity, and afterwards to evaluate the angular momentum.

It was proved by M. Poincare, and repeated by me in my previous paper, that
the first approximation to the pear-shaped figure is given by the third zonal
harmonic inequality of the critical Jacobian ellipsoid—zonal with respect to its longest
axis. In proceeding to the higher approximation | suppose that the amplitude of
the third zonal harmonic is measured by a parameter e, which is to be regarded as a
quantity of the first order. We must now also suppose the ellipsoid to be deformed
by all and any other harmonics, but with amplitudes of order e2 In the first
approximation the lost energy W is proportional to e3 but it now becomes necessary
to determine TVas far as the order
figure of equilibrium is rotated in azimuth through 180°. Such a rotation cannot
affect the value of the energy, and it thus becomes obvious that the odd powers of e

must be absent from the expression for WAe hay
inertia of the body as far as the terms of order e3 and thence to find the kinetic
energy T.The function E is equal to TV -
In order to attain the requisite degree of accuracy, it is convenient to regard the
pear as being built up in an artificial manner. 1 construct an ellipsoid similar to and
concentric with the critical Jacobian, and therefore itself possessing the same
character. The size of this new Jacobian, which 1 call is undefined, and is subject
only to the condition that it shall be large enough to enclose the whole pear. The
regions between Jand the pear being called | suppose the pea

positive density throughout J and negative density throughout (8 1).

The lost energy of the pear consists of that of J with itself, say \J J ; of J with
R, which is filled with negative density, say —JR; and of R with itself, say
This last contribution to the energy must be broken into several portions. It was
the evaluation of RWwich baffled me, until M. Poincare’s solutio
my help.

If we imagine the ellipsoid J to be intersected by a family of orthogonal quadrics,
and if we suppose for the moment that the region R is filled with positive density,
we may further imagine the matter lying inside any orthogonal tube to be transported
along the tube, and to be deposited on the surface of J in the form of a concentration
of positive surface density + C. The mass of  C is equal to that of + It, but it
is differently arranged. In the actual system R is filled with negative volume
density, and we may clearly add to this two equal and opposite surface densities
+ Cand - Con J.

Thus the matter lying in the region R may be regarded as consisting of negative
surface density — C on J jtogether with a double system, namely
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density —R in conjunction with equal and opposite surface density -f This

double system, say D, is therefore C —Rhe lost energy \RR may
as consisting of three parts; first the energy of — with itself, say \CC\

secondly that of D with itself, say %DD; thirdly that of — with I). This third

item is obviously equal to —<7(7+ OR, and therefore | is equal to —\CC

+ CR+ \BB.

It follows that the gravitational lost energy of the pear may be written symboli-
cally in the form

\JJ - JR + CR K7<7+ \BD.

In this discussion no attention has as yet been paid to the rotation, but fortunately

happens that the introduction of this consideration actually simplifies the problem,
for if we suppose fe/J and JR to mean the lost energies of J with itself and with R
on the supposition that the mass is rotating with the angular velocity of the critical
Jacobian, the formulae become much more tractable than would have been the case
otherwise.

The inclusion of part of the angular velocity in this portion of the function
only leaves outstanding the excess of the kinetic energy of the pear above the
Kinetic energy, which it would have if it rotated with the angular velocity of the
critical Jacobian. If w denotes the latter angular velocity, and {or + Sx2* the actual

angular velocity of the pear; if Ajbe the moment of inertia of J, 3
considered as filled with positive density, we have

E - \JJ-JR+ CR- \CC+ + {Aj- A) D9

In this statement | have omitted a term which arises from the displacement of
the centre of inertia from the centre of the ellipsoid; it is duly considered in the
paper, but is shown to vanish to the requisite order of approximation (8 2, 14).

The co-ordinates of points are determined by reference to the ellipsoid J, which
envelopes the whole pear, and the formula for the internal gravitation of J, inclusive
of the rotation & is of a simple character. The size of J is indeterminate, and
therefore the formulae must involve an arbitrary constant expressive of the size of
But the final result E cannot in any way depend on the size of the ellipsoid which
is chosen as a basis for measurement, and therefore this arbitrary constant must
ultimately disappear. Hence it is justifiable to treat it as zero from the beginning.
It appears then that we are justified in using the formula for internal gravity
throughout the investigation. If the artifice of the enveloping ellipsoid had not
been adopted, it would have been necessary to take note of the fact that the pear
is in part protuberant above and in part depressed below the ellipsoid of reference.
M. Poincaius did follow this last plan, and then proceeded to prove the justifiability
of using the formula for internal gravity throughout, The argument adduced above
seems, however, sufficient to prove the point.
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Although the constant expressive of the size of is put equal to zero—which
means that the pear is really partly protuberant above the ellipsoid—I have found
that a considerable amount of mental convenience results from always discussing the
subject as though the constant were not zero, so that the ellipsoid envelopes the
pear, and | shall continue to do so here.

When an ellipsoid is deformed by an harmonic inequality, the volume of the
deformed body is only equal to that of the ellipsoid to the first order of small
quantities. In the case of the pear, all the inequalities, excepting the third zonal
one, are of the second order, and as far as concerns them the volumes of J and
of the pear are the same. But it is otherwise as regards the third zonal harmonic
term, and the first task is to find the volume of such an inequality as far as el
When this is done we can express the volume of J in terms of that of the pear,
which is, of course, a constant (8 3, 4).

By aid of ellipsoidal harmonic analysis we may now express the first four terms
of E in terms of the mass of the pear, and of certain definite integrals which depend
on the shape of the critical Jacobian ellipsoid (8 5, 6, 7).

The energy N ED presents much more difficulty, and it is especially
M. PoincarE’s insight and skill have been shown. The system D consists of a layer
of negative volume density, coated on its outer surface with a layer of surface
density of equal and opposite mass.

Two surfaces, infinitely near to one another, coated with equal and opposite surface
densities, form together a magnetic layer or a layer of doublets. The change of
potential in crossing such a layer is 4ntimes the magnetic moment at the point of
crossing, and is independent of the form of surface. To find the difference between
the potential at two points at a finite distance apart, one being on one side and the
other on the other side of the layer, we have to add to the preceding difference
a term equal to the force on either side of the magnetic layer multiplied by the
distance between the two points. This additional term is small compared with that
involving the magnetic moment, provided that the distance is small. If the magnetic
layer coincided with the surface of an ellipsoid the force in question would be exactly
calculable, and if it lies on the surface of a slightly deformed ellipsoid the force
remains unchanged by the deformation as a first approximation.

Thus it follows that it is possible to calculate the difference of potential at two
points lying on a curve orthogonal to an ellipsoid, when one point is on one side
and the othei on the other side of a magnetic layer residing on a deformation of the
ellipsoid. Further, if the two points lie on the same side of the magnetic layer the
term dependent on magnetic moment (which would represent the crossing of the
layer) disappears, and only the term dependent on the force remains.

Iwo equal and opposite layers of matter at a finite distance apart may be built up
fiom an infinite number of magnetic layers interposed between the two surfaces.
Hence by the integration of the result for a magnetic layer we may find the change
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of potential in passing from any one point to any other lying on the same orthogonal
curve in the neighbourhood of a finite double layer.

Again, the system D, consisting of —R and + C, may be built up by an infinite
number of finite double layers. Hence by a second integration we may find the
difference between the potential of D at any point inside R and the point lying on J
where the orthogonal curve through the first point cuts the surface of J.

Finally, it may be proved that the lost energy \D D is equal to half the difference
of potentials just determined multiplied by the density and integrated throughout
the region R. The required expression of this portion of the energy is found to
consist of two parts, of which one depends on magnetic moment and the other on the
force (89). The reduction of this part of the energy to calculable forms is not very
simple ; it is carried out in |811, 12.

The calculation of the moment of inertia of the pear is comparatively easy, since it
only involves those harmonic inequalities of J which are expressible by harmonics of
the second degree (8 13). On multiplying the moment of inertia by JSco3 we obtain
the last contribution to the expression for

The energy function cannot involve €3 since the vanishing of the coefficient of that
term is the condition whence the critical Jacobian was determined. If f denotes the
coefficient of any harmonic inequality other than the third zonal one, the part of E
independent of SW3is found to contain terms in e3 e}f and (/)3 The coefficient of
& consists of a constant term, a term in e3and terms in f and where these f s
denote the coefficients of the second zonal and sectorial harmonics. This last part
does not contain the coefficient of any harmonic of odd degree, and in the first part
the coefficient of the term in e2 for all such harmonics is found to vanish.

The condition for the figure of equilibrium is that the variations of E for variations
of €3 and of' each f shall vanish. On differentiating E with respect to the f of any
harmonic of odd degree and equating the result to zero, we see that that f must
vanish. Hence it follows that the pear cannot involve any odd harmonic excepting
the third zonal one. Again', the symmetry of the figure negatives the existence of
any even functions involving sine-functions of the quasi-longitude measured from
the prime meridian (as | may call it) of symmetry through the axis of rotation.
The same consideration negatives the existence of even functions involving cosine
functions of odd rank. Accordingly the only functions to be considered are the even
ones of even rank, involving the cosine functions of the longitude.

The equation to zero of the variations of E for all the excepting f,,, f.f gives

at once all thosef ’sin terms of €2 The equations to zero of the variations for e2 f,
f 2give three equations for the determination of &2 f, f 2as multiples of e3 We
thus have the means of finding the angular velocity and all the in terms of the
parameter e, which measures the amount of departure of the pear from the critical
Jacobian ellipsoid (§ 14).

It seems unnecessary to give here any explanation of the methods adopted for
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reducing the analytical results to numbers, and it may suffice to say that the task
proved to be a very laborious one.

The harmonic terms included in the computation were those of degree 2 and ranks
0 and 2, of degree 4 and ranks 0, 2, 4, and of degree 6 and ranks 0, 2, 4. The sixth
sectorial harmonic was omitted because its contribution would certainly prove
negligible.

The expression for Sco2was found in the form of a fraction, of which the denominator
is determinate and the numerator consists of the sum of an infinite series. Nine
terms of this series were computed, namely, a constant term and the contribution of
the eight harmonic terms specified above. | found, in fact, that it would only change
the numerator by about one-twentieth part of itself, if all the harmonics excepting
the zonal ones of degrees 2, 4, 6 had been dropped.

The result shows that the square of the angular velocity of the pear is less than
that of the critical Jacobian ellipsoid in about the proportion to 1 —-}&2to 1L On
the other hand the angular momentum of the pear is greater than that of the
ellipsoid in about the proportion of 1+ x5c2to 1. If this last result were based
on a rigorous summation of the infinite series, it would, in accordance with the
principle explained above, absolutely prove the stability of the pear. The inclusion
of the uncomputed residue of the series would undoubtedly tend in the direction
of reducing the coefficient given in round numbers as 35, and if it were to reduce it
to a negative quantity, we should conclude that the pear was unstable after all.
The apparently rapid convergence of the series seemed to render it almost incredible
that the inclusion of the residue could bring about such a reversal of our conclusion,
yet | thought it advisable to make a rough estimate of the amount of change which
would arise from the contribution of the eighth zonal harmonic.

The contribution of the sixth zonal harmonic to the series above referred to was
about 00006, and | find that if the contribution of the uncomputed residue should
amount to 00014, the apparent stability of the pear would be just reversed. Now
my estimate of the contribution of the eighth zonal harmonic to the same sum is
‘0000008, or only yyyth of the critical amount.

Since the convergency of the series is obviously very rapid, it is wholly incredible
that the inclusion of the uncomputed residue could materially alter, much less
reverse our result. 1 regard it then as proved, but by something short of an
absolute algebraic argument, that the pear-shaped figure is stable.

The numbers obtained in the course of the determination of the stability afford
the means of giving a second approximation to the form of the pear. The result is
shown graphically in the figure of § 20, where the largest value of e is adopted
which seemed to secure a fair degree of approximation in the result. I originally
called the figure pear-shaped,” because M. Poincare’s conjectural sketch in the

Acta Mathematica was very like a pear. In the first approximation, shown in my
foimer papei, the resemblance to a pear was not striking, and it needs some imagina-
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tion to recognise the pear shape in the second approximation shown here ; but a
distinctive name is so convenient that we may as well continue to call it by that
name.

The effects of the new terms now added are almost entirely concentrated at the
two ends. All these terms, excepting a very small one arising from the second
sectorial harmonic, tend to augment the protuberance at the stalk and to fill up the
depression at the blunt end. It is true that there is a small term, arising from the
square of the third zonal harmonic, which diminishes the protuberance and increases
the depression, but this cannot be regarded as a new term, since it only represents
the effect of the fundamental harmonic carried to the second order of small
quantities.

The new zonal harmonics furnish by far the most important contributions. The
second zonal harmonic denotes that the ellipsoid most nearly resembling the pear is
longer and less broad than the Jacobian. The largest contribution of all is that
due to the fourth zonal harmonic, and this may be regarded as the octave of the
second zonal term. A rough estimate shows that the eighth harmonic, or the double
octave of tbe second, is still sensible. The sixth harmonic is the octave of the
fundamental third zonal harmonic, and is the last of the three important terms.

The general effect is that the protuberance at the stalk of the pear is much
increased, and the depression at the other end nearly filled up. Over the greater
part of the whole surface the depressions and protuberances are less conspicuous
than they were. The nodal lines where the surface of the pear cuts that of the
ellipsoid are entirely shifted from their former positions. It did not seem worth
while to attempt to specify their new positions, because the choice of the ellipsoid to
which we refer influences the result so largely. The ellipsoid on which these figures
are constructed is that which is called J in this summary. Its volume is a little less
than that of the pear, so that the protuberances are a little greater in volume than
the depressions.

I think it is hardly too much to say, that in a well-developed “ pear the
Jacobian ellipsoid has nearly regained its primitive figure, but subject to a small
tidal distortion due to the attraction of a protuberance which it shoots forth at
one end. | venture to give here a conjectural sketch of a further stage of the
development.

Conjectural Sketch.

If we look at this figure and at those drawn by Mr. Jeans in his striking
investigation of the parallel changes in the shape of an infinite rotating cylinder
VOL. m—A. 2 S
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(s pap. 67), we can hardly fail to be reminded of some such phenomenon as the
protrusion of a filament of protoplasm from a mass of living matter.

Notwithstanding the caveat which M. PoincarE enters as to the dangers of
applying these results to heterogeneous masses and to cosmogony, 1 cannot restrain
myself from joining him in seeing in this almost life-like process a counterpart to at
least one form of the birth of double stars, planets, and satellites.

Note. Bm u Ellipsoidal Harmonic Analysis, Phil. Tians., A, vol. 197,
p. 512, line 4 from foot. The first term inside the bracket should be negative.
The mistake runs on and the same correction should be made in equations
(62), (63), and (64), and in line 9 on the following page.



