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III . “ On Ja c o b i’s F ig u re  o f E qu ilib rium  for a  R o ta tin g  M ass o f 
F lu id .” B y  G . H. D a r w i n , M.A., L L .D . ,  F .R .S ., F e llo w  o f 
T rin ity  C ollege a n d  P lu m ia n  P rofessor in  th e  U n iv ers ity  of 
C am bridge. R ece iv ed  O c tober 12, 1886.

I  am not aware that' any numerical values have ever been de
termined for the axes of the ellipsoids, which are figures of equi
librium of a rotating mass of fluid.*

In  the following paper the1 problem is treated  from  the point of 
view necessary for reducing the formulae to a condition for computa
tion, and a  table of num erical resu lts is added.

Let a, 6, c be the semi-axes of a homogeneous ellipsoid of un it 
density ; le t the origin be a t the centre and the axes of a>, be in 
the directions a, 6, c.

Then if we p u t—

it is know nf th a t the potential of the ellipsoid a t an in ternal point 
*, y, z  is given by—

How let us introduce a new notation, and let

* The following list of papers bearing on this subject is principally taken from a 
report to the British Association, 1882, by W . M. H icks:—

Jacobi, ‘ Acad, des Sciences,’ 1834; Liouville, ‘ Journ. iScole Poly tech.,’ vol. xiv, 
p. 289 ; Ivory, ‘ Phil. Trans.,’ 1838, Pt. I, p. 57 ; Pontecoulant, * Syst. du Monde,’ 
vol. ii. The preceding' are proofs of the theorem, and in more detail we have s—  
C. O. Meyer, ‘Crelle,’ vol. xxiv, p. 44; Liouville, ‘ Liouville’s Journ.,’ vol. xvi, 
p. 241; a remarkable paper by Dirichlet and Dedekind, * Borchardt’s Journ.,’ 
vol. lviii, pp.181 and 217 ; Riemann, ‘ Abh. K. Gl-es. Wiss. Gottingen,’ vol. ix, 1860, 
p. 3 ; Brioschi, ‘ Borchardt’s Joum.,’ vol. lix, p. 63; Padova, ‘ Ann. della Sc. 
Norm.. Pisa,’ . 1868-9 (being Dirichlet and Riemann’s work with additions); 
G-reenhill, 4 Proc. Camb. Phil. Soc.,’ vol. iii, p. 233 and vol. iv, p. 4 ;  Lipschitz, 
‘ Borch. Joum .,’ vol. lxxviii, p. 245; Hagen, ‘ Schlomilch Zeitsch. Math.,’ vol. xxiv, 
p. 104 ; Betti, ‘ Ann. di Matem.’ vol. x, p. 173 (1881) ; Thomson and Tait’s ‘ Nat. 
Phil.’ (1883), Part II, §778; a very important paper by-Poincare, ‘ Acta Mathem.,’ 
7, 3 and 4 (1885).

f  Thomson and Tait’s *Nat. Phil.’ (1883) §494, l. The form in which the 
formula is “here given is slightly different from that in (8), (11), (15) of §§ 4 9 4 ,1c, t.

A 2= a 2+ u, 2?3=&2 +  w, c2-f-w, and

(1)

V=irabc , z2 cMkn
* T d c ] '  • * *
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c= «coS7, 8i n « = v / ^ ,  a u d fc a c o s f t  

so that sin /J=sin »sin 7, and 5 = a v/ ( l _ s i n2fl6Sin27.)

Also let ■JPn + & ~ £ z £ 9s sin37
sin20 sin2#’

whence £ s= » + i « = ^ ^ L ( l _ 8iaS, s!n>(>),

£ > = u + c - ^ ^ .
. 2a2sin27

--------- --— cos 6 dO,sin3# *
and 

and

Lastly, let A =  - s in 2* sin2«y),

(4)

and in accordance with the usual notation of elliptio integrals let

: TAd<y.
Jo

J ydy
Jo

Then we have the following transformations

^  =  1 -  2 F\0a b g a  sin 7
d’k I-*00 7 du 2
ada ~ J \0A3BO a3sin87
d^r r du

-  2 (~~ Mb ~  llo AB*C assin37 J

1
§ 

1 ©
■*

§H
 *

 
II

•

• 00 7du
101W6*

* |  
a3sin37 J

-*» =  & » 8in ^ (F - E)
> • (6)

’'tan2"/
dy

I t  remains to reduce the last two of (6) to elliptio integrals.
If  Je and Jc be the modulus and its complement, the following are 

known transformations in the theory of elliptic functions, viz.

I 1 t? ^2sin 7 cos 7
JoA3^ ^  F a— ...................* • m

Henon

fYtan27^ _A tan 7

s —  E
k*k'*

(8)

sin Tcos7_  j_
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In  the present case &=sin 1c'—cos «, A=cos/3. Thus (8) and (9)
enable ns to complete the  required transform ation to elliptic in . 
tegrals of (6).

Substituting then from (6) (8) (9) in the  expression

__ 0 f ,  a?2 dft yz d^r 2 d^r 1
V =  *». ^ + y  W + T d i  } ’

1886.] Equilibrium fo r  a Rotating Mass o f Fluid.

where wi — irdbo = f?ra3cos /3 cos 7, we have

j g _ ( E - F )  + J L
sin2«  ̂ “ \  cos2<* cos y3 sin2<*

i i ^ s v ) + ^ (E - teni,C08|3)]  • (10)

o o r
V - r fm  =  — t— F  H—3 . 3 —* a sin 7 orsin371_

Now suppose the ellipsoid to be ro tating about the axis of z w ith 
an angular velocity tv, and let us choose the axes a, a cos (3, a cos 7, 
and the angular velocity tv, so th a t the surface may be a surface of 
equilibrium.

For this purpose V -f- -̂ o#2 (a?2 =  constant, must be identical with

as2 #2 g2 _
a2*̂ "a2 cos2/8 a2cos27

Now in (10) we have V  in the form

V = i a £ + l f y 2+ N s 2+ P , ...................... (11)

whence aP^L+jj; w2) = :a 2( jy r+ | «2) cos2y8=a2N 003*7.

Hence L —M + N  cos27 tan2y3= 0, 'll

•̂ a>2= N c o s27 — . (12)
or ■̂a>2sin2/3 = 3 f cas2/3—L.

There are two kinds of solutions of these equations (12). 
First, since

L=whc l i a= ~m* c o s PcosK •

_  Q cos y3 cos 7 fv sin27 _ 
—

cj/Sjr
M = 7rac--y- =  — 7ra3cos y3 cos 7 .

0 cos /3 cos 7 P  sin27 T 
=  _ 2 ,r  sin37 J o- aS " ^ ’

sin27 
a3sin37 J 0 A3 •£?7

it is obvious that L —M  vanishes when * = 0 .

> . (13)
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And since when a vanishes, ft also vanishes, the equation 

L —M -\-N  cos27  tan2/3= 0  

is satisfied by a = 0 ,

That is to say there is a solution of the problem which makes 
a= b.

Thus there is solution which gives us an ellipsoid of revolution. 
When sin <*=0, we have also /3=0, A = l ,  and

Therefore .

â»2= N ’cos37 — L r

7T
= t a n V 27 .~ 2- ^ n  7— (1 +  tan27>(sin 7 cos 7 —7)],

—t a n ^ 7^'*~tan2 7 ) t an 7],  . . . .  . . . (14)*

and the eccentricity of the ellipsoid of revolution is sin 7.

To find the other solution when a is not zero, we have by com
parison between (10) and (11),

sin3« sins7 
27rcos cos 7 = E - F ,

M  . sin3« sin37 sin3a sin 7 cos 7 _  _  .
27rcos^8cos7— cos3« cos ft ^ ~  860

, ,  sin3«sin37 „ •
N . 73------- --------= ta n 3a (E —tan 7 cos2ir cos ft cos 7 v

Hence the first of (12) gives 

~ ( 2 F - E ) + E s e c 3a

+ ta n 3* tan3y3 cos37 ( E - ta n  7 cos ft) =°>

* Compare with Thomson and Tait’s * Nat. Phil./ § 771, (3) ; or any other work 
which gives a solution of the problem.
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or
E sec2* [ l  +  (sin * tan  /3 cos 7 )2] — (2 F —E)

—-sec3* sin * tan  /3 cos 7(1 +  sin2/3) = 0 . . . . (16)

In  order to adapt this for computation, we may introduce the 
auxiliary angles defined by

tang==sin*tan/3coS7, tan£=siny3, . . . . (17)

and the equation becomes

E sec2* sec2̂ — (2E —E ) —sec2*sec2S tang '= 0 . . , (18)

The second of (12) giyes

~  . sip2* si!^  =  tan2* cos27 (E —tan  7 cos y3) — ( E —F ) , 
4?r cosy3 cos 7 *

, ..............«3 _ F —E 4 E cos37 cos/} cos 7
whence . _ ~~~~ *9 • I ■ o 2 o * 2 *4w cos y3 cos 7 sin** s m ^  surfy costae cos~* si 0^7

w3
4tt

= c o t /3 cosec y3 cot 7 (F —E ) +  cot37 cos /3 sec2* E —cos2/3 cot27 sec2*.
. . . (19)

Some of the subsequent computations were, however, actually 
made from a form ula deduced from  the  th ird  of (12), which leads to

1|j2
— = c o t 3  cot 7 cosec3/3(I +  cos2/3)(F—E ) —cot3/3 cot 7 tan2* cosec /3E 
4tt . . . .

+  cot2/3 cot27 sec2*. . . (20)

By subtracting (20) from (19) we can deduce (16) ; hence i t  follows 
th a t (19) and (20) lead to identical results. M ost of the subsequent 
results were computed from both (19) and (20), thus verifying the 
solution of (18).

The formulae (18) and (19) are suitable for finding the solution, 
except when a is small or nearly  90°, when the elliptic integrals 
become awkward to use. I  have, therefore, found approxim ate 
formulae for these cases, bu t as the  algebraic process necessary to 
establish them  is somewhat tedious, the  details are given in  a note.*

Approximate Solutions o f  the Problem.
From (7) we have 

rv
(1 -A * )*

E - - E r ^ - E ) -sin y  cos y  
tflc '-A . •(«)
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Approximate Solutions o f the Problem—continued.

Now, since (16) may be written

P i* -  ( ® - E) [ —i  a ♦ 4 f n  r l  :
it follows from (a) and (8) that it may be written 

A2 —̂ 7-  d y= sin2y cos2y f
A Jo A ‘

Again, we may write (19) thus : —

w<2 _  A cqs ^^t?' _  -m , A cos3y  A2cos27

47r Jftrin V  +
_ A cos y  I sin2y^ A cos3#y I ^ tan 2y

sin37 

A cos y

o
r-rV

sin3r  Jo
dy

I t is easier to develop the equations when written in the forms (5) and (c) than 
when we work directly from the elliptic integrals.

Write for brevity

Jc =  sin a, g — cos a, p  = cosy, q ^ s in y ,  Q, =  tan 7, A = logecot(i7r - J 7). 

First, when k is small—

The following definite integrals are required :—

1 i n —. qndy= —~qn~]p  +

p 2
dy-

n — l  f---- I
* J

qn~‘dy.

qn~-dy.

(d)

(0

From (J)and from - 1  . ^ —  =  1 + | i - V  + | ^ y  +

l
q4 ,  1 , 3 3.1 3 . , 1 5 5 5.3 5.3.1 \  . -x

•5? r - e t f r - e z z i r  * )+ . ( /)

A2~ l  — Jc2q2, and

3.53 /3.5.3.1 3.1 \ "
1P + y  ( 2.6.4.2 4.2 ? )_

“  “  l q3p~ l qp+1 7 +48 [ ' i s ^  ~ 1A qp+y{ ^ ~  l q~) ]  •

Again, ~  =  l + ^ 2̂ 2-f . . and by (e) —
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Approximate Solutions of the Problem—continued.

-y+\v[ ) - + ! » - ! * ]  +• • •

I o2 2 r  g 0 0
i’V j-^-rf7=J,23“ i>222-r  + 2 F |_^25 -2-p25 + 2 i?23-2W22J  + •••

=M3 - ^ 2 .7 + & (  _ \ pq s + |_p23 _  | ri?222̂  + . . ........... .....  (A)

The equation ( b) is jP2j 2 whence, equating (g) and (A),

| j . y + | i , j - | T( i + | y v ) + F [ _ } r f  + l l M . + | M _ r ( | . + | 2. - | 2. ) ]

+ . . . =  0.

If Jc be zero, we hare ^ 9zP + ^ V i ^ y \ % +PiT j  =  ̂ -

__ sin 2y — sin 4y

1886.] Equilibrium fo r  a Rotating Mass o f Fluid.

This easily reduces to 1 — i  cos 4y

of which the solution is y =  54° 21' 27", as stated in the text. 
Now

d_
dy + ^P2"“7 ̂  +JPV^J 3=1 cos 2y + cos 4y + y  sin 4y],

and with the above value of y  is equal to —0*1355014.
Also, with this value of y  the coefficient of Tc1 is 0*0160432 ; so that

0*0160432 sin (y-54° 21' 27") =0*1355014F,

or, sin2a =  10*9266528 sin (y — 51° 21' 27"),

which is the equation (21) of the text.

Again j o- ^ 7 = - ^ + ^ r + ^ 2( - ^ 2 ■ p -lf f l’ + f-y ) ’

V1 j  ̂ d y  =  qp-  (1 -  22)t + ( f 3P + (1 -  22) -  | ?  (1 -  <f) )

=  qp -  y  + <Ry + ^  A2 (  -  ̂ <fp + -  | y  + ) .

Therefore

Now A = i-* £ y - . . .
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Approximate Solutions of the Problem—continued.
Therefore

+l k'2 ~ T qp + ( t ~ +s4)? ]

^ 2[ - | q + ( | ,4 q2) t ] + ^ v [ ^ 2q - ^ q. + ( ^ - ! q h ^ 7] .  . 0)

Hence from (c) and (j)

4 7T =2^f [(3 + Q2)r-SQ .] + ^  [ j 22Q -^-Q , + ̂ _  | q2+?2Q2̂  rJ :

which is the equation (22) of the text.
Secondly, let k be nearly unity and g small—

Then we require the following definite integrals :—

Now

f — ———?Qn *— —— (*J  p n 1 n - V ^  l j

1 'Ldy =  —q4- A. . .J P
A2 =  l — k2q2— + ff2q2p~2).

± - l (
A3 -  ®3 \

Ay. (Jc)

(0

A3 p 3 

A 3 p 3 2 9 p 6
By (k) and (l)—

J ^ “ ^ 2+| « - | A- | ^ [ ^ - 4 7 2 ? Q s- f 7 |y  + | 7 | A]  •••

q [ 1 + 3 Q2 + ff2( j  + l Q2- J Q'4) ]  “ f ^ 1+ T * 9)

Now

therefore
=i+ /Q 2,

j^2J ^ r = | ?  [ i  + |Q 2+ 2̂(^ -+ ^ Q 2+^-Q4) ]  - | a [ i + / ( x +  Q2) ] •

But

therefore
A = 1+Q2>r

-  §5 [ 14 q! 4 ^ ( t +T « ,+ § « ,+ 4 q‘) ]

~ | A [i.+ Q2+/ ( x +^ 2+Q4) J - .....................W
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s L . / _ ? ! . .
a p3 + p  i 9\i>6

'+I » - ! A)  + (“ 2 + A> ^  -  4T2?<̂ I_  H 3 + ̂ 1* )

+ (^2ft, + | « - | A) ] - - -

- | 2 (i + Q3>+ ^ ( ! + | q!- > ) _ K 1 +5 / }  • •
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The equation (5) for determining the axes is

^r= Q 2|-% V

Hence equating (m) and (n) and dividing by —q we have
2

which is the equation (23) in the text.
The equation (c) for w may be written

w2 A  
4t Q3

= 0,

Now

(1 + V ) [ q̂dy=q | ( ^ - l ) ( l  + <*■> + ***( j A(l + «'-■)-^<1 + <W*] } 

Jx«*Y-2 | f ( l  + < W -fA + f J * [ | + | ^ - i « ,- | - A]  }

(1 ♦ <wj£«r- ]-?* -«  { f ( l +«S)- |(1 +<M + \<r [ | ( |

-H }.
YOI* XLI. z
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If a be infinitely small, so that the Jacobian ellipsoid of three 
unequal axes becomes in the limit an ellipsoid of revolution, we have 
7 given by

_ sin 27—T5g-sin47 
1 1 —£ cos 47

The solution of this is 7 = 54° 21' 27".
If we write tan 7 =  /, as in Thomson and Tait’s £ Natural Phi- 

losophy,’ §778', this equation becomes

Prof. G. H. Darwin. On JacobVs Figure o f [Nov. 25,

tan-1/  _  1 +  J-g- /2
/  ~  1+

which is the equation (9), §778', of that work.
The ellipsoid of revolution of which the eccentricity is sin 54° 21' 27" 

belongs to the revolutional series of figures of equilibrium, and is 
the starting point of the Jacobian series of figures. As shown by 
Sir William Thomson, it is the flattest revolutional figure which is 
dynamically stable. The Jacobian figures of equilibrium are initially 
stable, and as stated by M. Poincare,* there is for this value of 7 a 
crossing point of the two series, and an exchange of stabilities.

If a. be small, it appears that sin a, is given by

sin2a =  10'9266528 sin (7 —54° 21' 27"), . . . (21)
and u by

to1
4'7T cot37 [ (3 +  tan27) 7 — 3 tan 7].

V9) ta n 7 +  7( a5 — ( f - s in 37)tan27)] . (22)

Approximate Solutions o f the Problem— continued.

N ow  A=jt? ^1 +  ^ 2Q2. .

Therefore

4 [ (1 + Q'-') -  M I  + Q")—! c1 + Q!)

+ >  [ A( ^ +2Q!+Q<) 4 - ?̂ !- i Q<]  }•
Hence

which is the equation (24) in the text.
* “ Sur l’fiquilibre (Tune Masse de Fluide, &c.,” c Acta Mathematical 7 ,1886.
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These formulae are, i t  m ust be adm itted, of bu t little use, since it 
would be necessary to take in higher powers of sin2* to obtain results 
for a variation of 7 of more than  1°.

If * be near 90°, so that cos » is small, the approximate equation 
between « and 7 is

1 -j- tan27 + cos2a (  y8 +  y7 tan27 + -f tan47 + £  tan67)

1886.] Equilibrium fo r  a Rotating Mass o f Fluid.

1
sin 7

log,scot(^7r—^7) • [1 +  f  tan27 + co s2a ( - ^ + JsiL tan27 + ta n 47)]
= 0 . . . . (23)

And to is given by

+  l c o s 2* l o g ecot(^7r —17) . ( f  +  2 tan27 + t a n 47 ) — y t a n 27

tan47l  j  . . (24)

W e  shall retu rn  later to a modification of (24) which will be 
applicable to very long ellipsoids of equilibrium.

Besides the angular velocity and the axes of the ellipsoid, the o ther 
im portant functions are the moment of momentum, the kinetic energy 
of rotation, and the intrinsic energy of the  mass. In  order to express 
these numerically we m ust adopt a un it of length, and it will be con
venient to take a, where

a3 =  abc =  a3cos / cos 7.

Thus a =  a(sec /3 sec 7)*.

Let a be the density of the fluid which has h itherto  been treated  as 
unity, and let ( 7̂r<r) ia5/i, (^7ra)~a5e be the moment of momentum and 
kinetic energy, then

(fs-<r)fa5/i=^-m(a2 +  62)a»=^y5r<7a5(sec /3 sec 7) * (1 +  cos2/3) (47ra) *

Thus fi =  •§-v/3(sec/3sec 7)^(1+  cos2y3)^-^— . . . (25) 

The function (25) is the quantity  which will be tabulated.

Again ( t 7rff)2a5e=^(£7T<r)Vj f i . w = l v/3(f7TO-)2a5 . ft J

so th a t £ (26)
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The function (26) is the quantity which will he tabulated.
Thus in the tables the unit of moment of momentum is taken as 

(!_,nr)?a5, or wiia*, and the unit of energy as (|7r<r)2a5 or m2/a.
It remains to evaluate the intrinsic energy, or the energy required 

to expand the ellipsoid against its own gravitation, into a condition 
of infinite dispersion.

If dt be an element of volume, then this energy is

integrated throughout the ellipsoid.
This will be denoted by (^7r<T)2a5( i—1), or m2a-1 (t — 1), so that i 

will be positive.
Now V = L x 2 + My2 + Nz2 + P ,and if we denote by A, B, C, the prin

cipal moments of inertia of the ellipsoid, we have

I I ]  X~° d +  C — A) =}md3,

and similarly, \ ^ y 2o d t= \m b2, j"j jz'-cr dt— }mc2.

§Also l<T dt=m.

Hence — (i — 1) =  [La2+ Mb2 +  2 +  5P ]
a

=Ti_wa2(sec ft sec 7 +  Mcos2ft +  N cos27 +  5PoT2] .

But if we take the values of L, MN given in (15), and note that

2
P  =  7rtl3COS ft COS 7 . — 7--- F,a sm 7

it easily follows that

L  + M  cos2ft + Ncos27 + P u_3= 0 .

Hence — (i— 1) =  — \md?{scc ft sec . P a r 2
a

• 4 Q 2 -p,
=  — fma2(sec ft sec 7)* . 4^2 ’

_ s to2 (cos ft cos 7 ) ^
s a sin 7

Therefore i = l ..................................... (27>sin 7

For a sphere 7 becomes infinitely small, and F becomes equal to 7, 
so that F/sin 7 = ! .  Thus i — 1 = —f  Therefore the exhaustion ot



•energy of a sphere of radius a is -fra2/ a ; which is the known result. 
For an ellipsoid of revolution <*=0, and >3=0, and F = 7 ;  so th a t

S in  7

The function (27) is the quantity  tabulated  below. I t  seemed p re
ferable to tabulate a positive quantity, and i t  is on th is account th a t 
the  intrinsic energy corresponding to  the infinitely long ellipsoid is 
entered as unity.

H aving now obtained all the  necessary formulae, we m ay proceed 
to  consider the solution of the problem.

"We have to solve

sec2<* sec2£ E —(2 F —E ) —tan £ sec2a sec2£ = 0 , . . (28)

where tan  £ =  sin a  tan  y8 cos 7, tan  2 = sin >3=sin « sin 7,

r  g , n
and  F = l  ------ * E = l  cosfidy .

J 0 cos pJ0

The axes of the ellipsoid are

a . . b a €' a— =  (sec p  sec 7)*, — =  — cos /3, — =  — cos 7 . . (29)
£b 8> di St £L

If  ej, e3, es are the eccentricities of the sections through ca, cb, ab 
respectively, we have

ei =  sin /?, e2— sin 7, e3=  cos a. sin 7 sec >3. . (30)

Having obtained the solution, we have to compute

U32
——= c o t /3 cosec /3 cot 7 (F —E) -j- cot3/3cos >3 sec2« E —cos2/3 cot27 sec2«*

. . .  (31)

Then we next compute p  and e and i  from  the formulae (25), (26), 
<2 7).

The functions F  and E are tabulated in  Table IX  of the second 
volume of Legendre’s * T raite  des Fonctions E lliptiques,’ in a table of 
double entry  for a  and 7 for each degree.

The solution of (28) by trial and error was laborious, as i t  was 
necessary to work w ith  all the accuracy attainable w ith  logarithm s of 
seven figures.

The method adopted was to choose an arb itrary  value of 7, and

* As stated above, some of tbe computations were actually made from the 
formula (20).

1886.] Equilibrium for a Rotating Mass o f  Fluid. 331
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then by tria l and error to find two values of * one degree apart, one 
of which made the left-hand side of (28) positive, and the other 
negative.

The smallest value of 7 is 54° 21' 27", but after th a t value in tegral 
degrees for 7 were always chosen.

The solutions for 7 = 5 5 °  and 57° could not be found very exactly 
from the elliptic integrals w ith logarithm s of only seven figures, bu t 
the solutions were confirmed by the  approxim ate formulae (21) and 
(22). The solution for 7 = 8 0 °  was confirmed by the  approximate 
formulae (23) and (24), and th a t for 7 = 8 5 °  was only computed 
therefrom, since when 7 = 8 0 °  the  approxim ate form ula gave nearly 
identical results w ith the exact one.

The solution obtained is embodied in  the  table opposite. The first 
three columns give the auxiliary angles 7, /J, from  which the rem ain
ing results are computed.

As a graphical resu lt is m uch more intelligible than  a num erical 
one, I  have given two figures, showing the three principal sections in 
two cases, namely, where 7= 60°, and 7 = 7 5 ° . F o r these figures a as 
taken as 2 cm., so th a t the volume of fluid is %ir x  23 cubic cm.

1886.] Equilibrium fo r  a Rotating Mass o f Fluid.
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I t will be noticed that the longer the ellipsoid the slower it rotates. 
I t  is interesting to observe that while the angular velocity continually 
diminishes, the moment of momentum continually increases. The 
long ellipsoids are very nearly ellipsoids of revolution about an axis 
perpendicular to that of rotation. Thus in fig. 2 the section through 
b and c is not much flattened.

The most remarkable point is that there is a maximum of kinetic 
energy when a/a is about 3, or when the length of the ellipsoid is 
about five times its diameter. However, notwithstanding this maxi
mum of kinetic energy, the total energy always increases with the 
length of the ellipsoid.

The kinetic energy is the product of two factors, one of whijch 
always increases, and the other of which always diminishes; thus it'is 
obvious that it must have a maximum. The result was, however, 
quite unforeseen, and it seems worth while to obtain simpler formulae 
for the case of the long ellipsoids. This may be done by taking as the 
parameter a/a, or the length of the ellipsoid, instead of 7.

From the table we see that in the later entries y is very nearly
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equal to 7, and th a t a. becomes very nearly equal to 90®. Hence we 
may put «=90°, and /3= 7*

Thus, approximately,

1886.] Equilibrium fo r  a Rotating Mass o f  .

and

_  =  (sec /3 sec 7)!== (sec 7)? 
a

cos 7

The axes of the ellipsoid are

Now if in formula (24) we only retain the higher powers of tan  7, 
we have

a — *r>—♦"]47r<r tan  7 L sin 7 J

= i  ^g^j* [ f  logecot ( ^ —^7) - s i n  7J .

But

logeCOt d ir — I 7) — log, 1 ̂ ; gm  7= l 0gt2 + f  log,COS 7 Si

Therefore w riting 1—§loge2 = C , so th a t C =0*3573, we have

4*7T0 © 'K - ° ]
I f  we pu t a / a = 5*042, this form ula gives 0*01264. The full

value in the preceding tables was 0*0131; th u s  even w ith so short an 
ellipsoid as this, the results agree w ithin 4 per cent. W ith  rougher 
approximation we have

of which the limit, when a is large, is zero. 
For the moment of momentum we have

3*
5

/  y
(sec /3 sec 7)*(1 +  cos3/3) ( t~ )
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or, with rougher approximation,

[Nov. 25,

3 / a\£ 
lh2*

of which the limit is infinite.
. . 3* /» *Again,

te.

2 ^ \ 4ara)

a \ i
/ ’a /

_ A ; [ 1+ y ]  [ l0B‘S_ c ] '

Now the function -(lo g ,,-— C ) has a maximum, when logf- = l 4-Ca \a /  a

= 1'3573, that is when -= T 696 .a

On comparison with our tables it is obvious that the approximation 
is bad, and that the true solution for a maximum is considerably dif
ferent from the above. Nevertheless this investigation shows that 
there is actually a maximum of kinetic energy.

Since F =  log„cot ( ^ — i j )  = f  J^ log^+ | loge2j ,

we have

If we like we may express these several results in terms of the
a^minor and major axes of the ellipsoid, for 6 = c = - ^ ,  and therefore 

a3= c 2a.

Thus 4 7T(T

*© (1+vO(lo8|_iC)'
, a3 2a.  =  1 -1 ^ 5  log.—


