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I11. “On Jacobi’s Figure of Equilibrium for a Rotating Mass of
Fluid.” By G. H. Darwin, M.AA,, LL.D., F.R.S., Fellow of
Trinity College and Plumian Professor in the University of
Cambridge. Received October 12, 1886.

I am not aware that' any numerical values have ever been de-
termined for the axes of the ellipsoids, which are figures of equi-
librium of a rotating mass of fluid.*

In the following paper thelproblem is treated from the point of
view necessary for reducing the formulae to a condition for computa-
tion, and a table of numerical results is added.

Leta, 6, ¢ be the semi-axes of a homogeneous ellipsoid of unit
density; let the origin be at the centre and the axes of & be in
the directions a, 6, c.

Then if we put—

A2=a2+u, 273=&2+ w, c2-f-w, and

(1)

it is knownf that the potential of the ellipsoid at an internal point
* v,z is given by—

, z2Mkn

V=irabc *Tdc]' e * *

How let us introduce a new notation, and let

* The following list of papers bearing on this subject is principally taken from a
report to the British Association, 1882, by W. M. Hicks:—

Jacobi, ‘ Acad, des Sciences,” 1834; Liouville, “Journ. iScole Polytech.,” vol. xiv,
p. 289 ; lvory, ‘Phil. Trans.,” 1838, Pt. I, p. 57 ; Pontecoulant, *Syst. du Monde,’
vol. ii. The preceding’ are proofs of the theorem, and in more detail we have s—
C. O. Meyer, ‘Crelle,” vol. xxiv, p. 44; Liouville, ‘Liouville’s Journ.,” vol. xvi,
p. 241; a remarkable paper by Dirichlet and Dedekind, *Borchardt’s Journ.,’
vol. lviii, pp.181 and 217 ; Riemann, ‘Abh. K. G-e. Wiss. Gottingen,” vol. ix, 1860,
p. 3; Brioschi, ‘Borchardt’s Joum.,” vol. lix, p. 63; Padova, ‘Ann. della Sc.
Norm.. Pisa,”. 1868-9 (being Dirichlet and Riemann’s work with additions);
G-reenhill, 4Proc. Camb. Phil. Soc.,” vol. iii, p. 233 and vol. iv, p. 4; Lipschitz,
‘Borch. Joum.,” vol. Ixxviii, p. 245; Hagen, ‘Schlomilch Zeitsch. Math.,” vol. xxiv,
p. 104 ; Betti, ‘Ann. di Matem.’vol. x, p. 173 (1881) ; Thomson and Tait’s ‘ Nat.
Phil.” (1883), Part 11, §778; a very important paper by-Poincare, ‘Acta Mathem.,’
7, 3 and 4 (1885).

f Thomson and Tait’s *Nat. Phil.” (1883) 8494, I. The form in which the
formula is ‘here given is slightly different from that in (8), (11), (15) of 88 494,1¢c t.
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c=«co0S7, 8in«=v/ "~ | audfcacosft
so that sin/J=sin sin7, and 5=av/(l_sinZ3nZ7.)
Alsolet wmPh + & ~£z£9s sin37
sind sin2¢’
whence £s=»+i«=""L (1_8iaS, sinx>),
£>=u+c- ~ "~ | 4)
. 2axinZ
and NN cos 6 dO,
and
Lastly, let A= -sin 2 sin2q),
and in accordance with the usual notation of elliptio integrals let
J yd .
Jy y Taky.
Y Jo

Then we have the following transformations

N =
%Oabg ) as%n?F

ak @ 2

ada ~J\OABO  aSing7 “*»= & » 8in?(F- E)

dr I du ) >« (6)
~Mb ~ llpAB*C ~ assm37J(

&  du * ‘tan27
e AL a$in37|\] dy

It remains to reduce the last two of (6) to elliptio integrals.
If 2and & be the modulus and its complement, the following are
known transformations in the theory of elliptic functions, viz.

| 1€ ~2sin7cos7
JoOA3N A Fa— . e m

fytanZ’» _Atan 7
)

Henon B sinTcos7_j_
Kk
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In the present case &=sin 1c—cos «, A=cos/3. Thus (8) and (9)
enable ns to complete the required transformation to elliptic in.

tegrals of (6).
Substituting then from (6) (8) (9) in the expression

0 f, @& dftyz d*r
V= *», N+ y W +Tdi }

where Wi — irdbo=f?ra3cos /3cos 7, we have

0

o r
- = — ] E-F + J.
Verim = i F HErssi'n3371_£ﬂ1‘2«( ho« \ cos2¥cos \3 dite

iir"sv)+n (E- teni,C08|3)] = (10)

Now suppose the ellipsoid to be rotating about the axis of z with

an angular velocity tvand let us choose the axes a, :
and the angular velocity tv,so that the surface m
equilibrium.
For this purpose V f-/g2@2 = constant, must be identical with
&2 #2 g2

a2*\'axo0s28 aZosZ/ -

Now in (10) we have V in the form

V=iaf+Ify2+Ns2+ P |, . (11)
whence aP L+jj; W) =:a2(jyr+| «2) cos?y8=a2N 003*7.
Hence L—M + N cos27 tan2y3=0, 'll

7a2=Ncos2/ — - (12)
or wesin23=3f cas23—L.

There are two kinds of solutions of these equations (12).
First, since

L=whclia= ~m*cosPcosK

Q cosy3cos 7 fvsin27 _
g sin27 > (13)
M = Fac--y- = —7rax0s y3¢cos 7 .
y B azin7 10 A3
0 cosf3cos7 Psin27 T

= 2,r sind7 Jo-aS"N’

it is obvious that L —M vanishes when *=0.
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And since when a vanishes, ftalso var
L —M-\-N cos27 tan23=0
is satisfied by a=0,
. 'I[Jhat is to say there is a solution of the problem which makes

Thus there is solution which gives us an ellipsoid of revolution.
When sin <*=0, we have also /3=0, A=1, and

Therefore
"a2=N ’cos3l — Lr
m .
=tanV 27.~2"n 7—(1 + tan27>(sin 7 cos 7—7)],
—tan”~7M*~tan27 ) tan7], . . .. . L ()

and the eccentricity of the ellipsoid of revolution is sin 7.

To find the other solution when a is not zero, we have by com-
parison between (10) and (11),

sin3« sins7

27rcos cos7 -F.

sin3sin37 sinasin7cos7 _ _
" 27rcos"8cos7— coskcosft A ~ 860

,_sinxsin37 .
N Bircosficosy™ AN ®(F—tan 7cos

Hence the first of (12) gives

~(2F-E)+Eseca
+tan3~tan3Bcos3 (E -tan 7 cos ft) =°>

* Compare with Thomson and Tait’s *Nat. Phil./ § 771, (3) ; or any other work
which gives a solution of the problem.
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or
E sec2[I + (sin *tan /3cos 7)2] —(2F—E)
—sec3* sin *tan /3cos 7(1 + sin23)=0. . . . (16)

In order to adapt this for computation, we may introduce the
auxiliary angles defined by

tang==sin*tan/3coS7, tanf=siny3, . . . . (17)

and the equation becomes
E sec2* sec2*—(2E—E )—sec2*sec2Stang'=0. . , (18)

The second of (12) giyes

~ . sip2*silh_ = tan2* cos27 (E—tan 7 cos y3)—(E —F
4?r © cosy3cos 7 ( ¥ —( s
henge™"""" «3 _ J—E éll Ecos3r cos/}cos 7
WRENCE 4 cos y3cos 7 -singf* smA Slfr?y cost%e cos 5i0’27

r:i: cot /3cosecy3dcot 7(F—E) + cot37 cos /3sec2* E—co0s23 cotZ7 sec2*.
(19)

Some of the subsequent computations were, however, actually
made from a formula deduced from the third of (12), which leads to

j2
%t:cot 3 cot 7 cosecI3(l + cos23)(F—E) —cotI3cot 7 tan2* cosec /3E
o + cot23cotZ’ sec2x. . . (20)

By subtracting (20) from (19) we can deduce (16) ; hence it follows
that (19) and (20) lead to identical results. Most of the subsequent
results were computed from both (19) and (20), thus verifying the
solution of (18).

The formulae (18) and (19) are suitable for finding the solution,
except when a is small or nearly 90°, when the elliptic integrals
become awkward to use. | have, therefore, found approximate
formulae for these cases, but as the algebraic process necessary to
establish them is somewhat tedious, the details are given in a note.*

Approximate Solutions of the Problem.

From (7) we have

v
(1-A*)*

E--Ernr-E)Sin  ycosy .
tflc'-A - (9
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Approximate Solutions of the Problem—continued.

Now, since (16) may be written
Pi*- (® -E) [ aedfnrl:
it follows from (a) and (8) that it may be written

A2 —A7- dy=siny cosy f
A Jo A ‘

Again, we may write (19) thus :—

w2_ Acgs™t?_ -m , Acosy Azcosz

47 Jtrinv +
__Acosy | siny” Acos3y ™ tany
sing’— e
Acosy "V

It is easier to develop the equations when written in the forms (5) and (c) than
when we work directly from the elliptic integrals.

Write for brevity
X=sina, g—cosa p=cosy, g”siny, Q=tan7, A=logeot(it-J7).
First, when k is small—

The following definite integrals are required :—

1 b on=f
qrdy= —=qn-~p + “;‘!]Qn~‘dy. (d)
o gy ©
From (J)and from -1 . ~ — =1+]i-V +|" y +
a4, 1, 3 31 3., 5 5 53. 531\ -
-%?r-etfr-ezzw* )+.(/5<
A2~ | —X2 and
3.53 /3531 31 \"
IP+y (2642 427)_
‘e I & lg17+48['is™ ~A gp+y{"~ )] *

Again, ~ =1+ ~222f .. and by (& —
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Approximate Solutions of the Problem—continued.

W[)-+1n-1%] +eee

lo2 2 g 0 0
i'Vj-N-1f1=0,23"1322-r +2 F |_"25-2-p5+21723-2\W22]) + eee

=M3 N 2.7+&(_\pgs+[_p23 | r?22M .. e (A
The equation ( b)is jP3 2 whence, equating (g) and (A),

[J.y+]i,j-ITC(i+|]y v)+F[_}rf+IIM.+| M _r(|.+|2-]2)]
+...=0.
If Xbe zero, we hare "9 + AV iry\% +PiTj ="

_sin2y— sindy

This easily reduces to .
y 1—i cos 4y

of which the solution is y = 54° 21' 27", as stated in the text.
Now

d

dy_ +AP2" TN +JPVA A cos 2y + cos 4y +y sin 4y],

and with the above value of y is equal to —0*1355014.
Also, with this value of y the coefficient of Tl is 00160432 ; so that

0*0160432 sin (y-54° 21' 27") =0*1355014F,
or, sin2a= 10°0BEBsin (y—51° 21' 27"),

which is the equation (21) of the text.
Again  jo/rT7 = -M+ M+ A2(-N 2mp-Iffll+foy)’
Vi ~dy =g (1- 2t+ (f3P+ 1-22- "

=qp- y+<R+MR(-<fpr - |y + )

Therefore

Now A=i-*£y-...
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Approximate Solutions of the Problem—continued.
Therefore

+l k2 ~T op+(t ~ +s9§?]

"2[-[at (4 adt]l+ Av ["H-" gt (N-lght 7] . 0)

Hence from (c) and (j)

47 FVFIEHQr-SQI+N [20-7-Q, +1 | | q2+72Q27

which is the equation (22) of the text.
Secondly, let k be nearly unity and g small—

Then we require the following definite integrals :—

I n i Tt A 00

'Ldy= —4A . .
P ©
Now A2= | — k22—=+ffyd~2).

+ -1
A3 - 8\

A3 p3 29 p6
By (k) and (I)—

I A SN 24« - |AN[A-4T22Q s-fT]y +]7 |A] oo

qri+3Q@+fi{ j +1 Q- JQJ] “f " 1+T*9

Now =i+/Q2

therefore

"3 r=12 [ +1Q202~ -+ Q2+-Q4] - ali+ /(x+ @]+

But A’: 1+Q}

therefore

- 85[14 g'4 ~ ( t +T«,+8«,+4 9]

~ |A[l.+Q2+/ (x +N 2+QJ J -
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Approximate Solutions of the Problem—continued.

a 7 p3+p i 9>6
Hl» -TA) +(“2+A> A S AT22N_H 344 1%)

+H(O2ft 4|« - | A)]--

-[2+Q+" (| gl-> ) _K 145/} e

The equation (5) for determining the axes is
rr=Q2-% V

Hence equating (m) and (n) and dividing by 2—q we have

which is the equation (23) in the text.
The equation (c) for w may be written

w2 A
4t Q3

Now

@+V)[qdy=q [(" - 1) (| + <+ **>(jA(l +«"-m)-A<L +<W*] }
IX«*Y -2 | f (1 +<W-fA+fI* [|+ |[M-i« ,-|-A] }

(Lo<wjEar-]-?* -« {f (1 +«F-| (1 +<VH\=] | (]

HY.

YOI* XLI. zZ
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If a be infinitely small, so that the Jacobian ellipsoid of three
unequal axes becomes in the limit an ellipsoid of revolution, we have
7 given by

_sin 27—T4-sin47
1 1—£ cos 47

The solution of this is 7= 54° 21' 27",
If we write tan7 =/, as in Thomson and Tait’s £Natural Phi-
losophy,” §778', this equation becomes

tan-/ _ 1+ Jg/2
/o~ 1+

which is the equation (9), 8778, of that work.

The ellipsoid of revolution of which the eccentricity is sin 54° 21' 27"
belongs to the revolutional series of figures of equilibrium, and is
the starting point of the Jacobian series of figures. As shown by
Sir William Thomson, it is the flattest revolutional figure which is
dynamically stable. The Jacobian figures of equilibrium are initially
stable, and as stated by M. Poincare,* there is for this value of 7 a
crossing point of the two series, and an exchange of stabilities.

If a be small, it appears that sin g is given by

sinZa = 10'@6&8sin (7—b4° 21' 27", . . . (21)
and u by
tol
. cot37 [(3 +tan27)7—3 tan 7].
W)tan7+ 7( &—(f-sin3tanZ7)] . (22)
Approximate Solutions of the Problem— continued.
Now Asjt? AL+~ 2Q2. .
Therefore
41(1+@) - M +Q"M)— cl+QY)
> [AN+2QHQY4 - i b
Hence

which is the equation (24) in the text.
* “Sur I’fiquilibre (Tune Masse de Fluide, &c.,” cActa Mathematical 7,1886.
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These formulae are, it must be admitted, of but little use, since it
would be necessary to take in higher powers of sin2* to obtain results
for a variation of 7 of more than 1°.

If * be near 90°, so that cos » is small, the approximate equation
between « and 7 is

1--tan27 + cos2a(y8+ y7tan27 + -ftan47 + £ tan67)

i] 7Iog,scot("?r—"?) e [1+ ftan2Z7+cos2a(-"+JdLtan27 +tan47)]
=0. . . . (23
And to is given by
+1lcos2 | o g eot("7r —17) . (f+ 2tan2/+tan47)— ytanZ/
tand7l j . . (24)

We shall return later to a modification of (24) which will be
applicable to very long ellipsoids of equilibrium.

Besides the angular velocity and the axes of the ellipsoid, the other
important functions are the moment of momentum, the kinetic energy
of rotation, and the intrinsic energy of the mass. In order to express
these numerically we must adopt a unit of length, and it will be con-
venient to take a, where

a3= abc= a3xos/ cos7.
Thus a = a(sec /3sec 7)*.
Let a be the density of the fluid which has hitherto been treated as
unity, and let ("*7r<r)ia%i, ("7ra)~a% be the moment of momentum and
kinetic energy, then

(fs-<nfa¥i="-m(a2+ 62)a»="y5r<7a5(sec /3sec 7)*(1 + cos23) (4Fa)*
Thus fi =<§-v/3(sec/3sec 7)"(1+ cosy3)N-N—
The function (25) is the quantity which will be tabulated.
Again  (t7f)a5%e="(ETT<V] fi.w = V3(f7TTO-)2a5. ft J

so that £ (26)
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The function (26) is the quantity which will he tabulated.

Thus in the tables the unit of moment of momentum is taken as
('_nr)?a5 or wiia*, and the unit of energy as (|7r<r)2a5or m2/a.

It remains to evaluate the intrinsic energy, or the energy required
to expand the ellipsoid against its own gravitation, into a condition
of infinite dispersion.

If dt be an element of volume, then this energy is

integrated throughout the ellipsoid.
This will be denoted by ("#<Tpa5(i—1), or m2a-1 (t—1), so that i

will be positive.
Now V=Lx2+ My2+ Nz2+ P ,and if we denote by A, B, C, the prin-

cipal moments of inertia of the ellipsoid, we have

1] x=° d- C—A)=}md3
and similarly, \Ny 2dt=\mb2j"jjz-crdt—}mc2
Also § Kdt=m.
Hence — (i—1) = [La2+ Mb2+ 2+ 5P]
a
=Ti_wa2(sec ftsec 7+ Mcost
But if we take the values of L, MNgiver

2
P = 7336t GB7 .—?——f,
asm

it easily follows that

L+M cost + bbsZ/ + P u_3=0.
Hence —(i—1)= — \md?{scc ft sec. P
a
. 4 Q 2 7
= —fma2(sec ftsec 7)* . 472 °

s w2(cos ftcos 7 )"

s a sin7
Therefore i = T S (27>

sin7

For a sphere 7 becomes infinitely small, and F becomes equal to 7,
so that F/sin7=!. Thus i—l=—f Therefore
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eenergy of a sphere of radius a is -fraZa; which is the known result.
For an ellipsoid of revolution <*=0, and >3=0, and F=7; so that

Sin 7

The function (27) is the quantity tabulated below. It seemed pre-
ferable to tabulate a positive quantity, and it is on this account that
the intrinsic energy corresponding to the infinitely long ellipsoid is
entered as unity.

Having now obtained all the necessary formulae, we may proceed
to consider the solution of the problem.

"We have to solve

secXsecX E—(2F—E )—tan £secZasec=0, . . (28)

where tan £= sinatanyBcos7, tan 2=sin>3=sin«sin7,
r ? ,n
and F=1 -—- * E=1 cos |th.
p

The axes of the ellipsoid are

€
st

Pl

%: (sec p sec 7)*, %: j—_cos 13, 0s7. (2
I

If ej, e3 es are the eccentricities of the sections through ca, cb, ab
respectively, we have
ei= sin /?, e2—sin 7, e3= cosasin7sec3 . (30)

Having obtained the solution, we have to compute

Bp
=cot /3cosec/3cot 7(F—E) 4-cotI3cos 3Bsec2 E—cos23 cotZ7 secx*
(31)

Then we next compute p and e and i from the formulae (25), (26),
<27).

The functions F and E are tabulated in Table 1X of the second
volume of Legendre’s *Traite des Fonctions Elliptiques,’in a table of
double entry for a and 7 for each degree.

The solution of (28) by trial and error was laborious, as it was
necessary to work with all the accuracy attainable with logarithms of
seven figures.

The method adopted was to choose an arbitrary value of 7, and

* As stated above, some of tbe computations were actually made from the
formula (20).
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then by trial and error to find two values of * one degree apart, one
of which made the left-hand side of (28) positive, and the other
negative.

The smallest value of 7 is 54° 21' 27", but after that value integral
degrees for 7 were always chosen.

The solutions for 7=55° and 57° could not be found very exactly
from the elliptic integrals with logarithms of only seven figures, but
the solutions were confirmed by the approximate formulae (21) and
(22). The solution for 7=80° was confirmed by the approximate
formulae (23) and (24), and that for 7=85° was only computed
therefrom, since when 7=80° the approximate formula gave nearly
identical results with the exact one.

The solution obtained is embodied in the table opposite. The first
three columns give the auxiliary angles 7, /J, from which the remain-
ing results are computed.

As a graphical result is much more intelligible than a numerical
one, | have given two figures, showing the three principal sections in
two cases, namely, where 7=60°, and 7=75°. For these figures a as
taken as 2 cm., so that the volume of fluid is %rx 23cubic cm.
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It will be noticed that the longer the ellipsoid the slower it rotates.
It is interesting to observe that while the angular velocity continually
diminishes, the moment of momentum continually increases. The
long ellipsoids are very nearly ellipsoids of revolution about an axis
perpendicular to that of rotation. Thus in fig. 2 the section through
b and cis not much flattened.

The most remarkable point is that there is a maximum of Kinetic
energy when a/a is about 3, or when the length of the ellipsoid is
about five times its diameter. However, notwithstanding this maxi-
mum of kinetic energy, the total energy always increases with the
length of the ellipsoid.

The kinetic energy is the product of two factors, one of whijch
always increases, and the other of which always diminishes; thus it'is
obvious that it must have a maximum. The result was, however,
quite unforeseen, and it seems worth while to obtain simpler formulae
for the case of the long ellipsoids. This may be done by taking as the
parameter a/a, or the length of the ellipsoid, instead of 7.

From the table we see that in the later entries y is very nearly
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equal to 7, and that a becomes very nearly equal to 90®. Hence we
may put «=90°, and /3= 7*

Thus, approximately,
_ = (sec/3sec 7)!==(sec 7)?
a

and cos 7

The axes of the ellipsoid are

Now if in formula (24) we only retain the higher powers of tan 7,
we have

4 tan 7 Lsin7 a—"r 5"]

=i ~gNj* [f logecot (A~ —~7)-sin 7J .
But

logeCOt dir—I7) &079 17;gn 7= IOgt2§L f log,

Therefore writing 1—8loge2=C, so that C=0*3573, we have

&m © 'K -°]

If we put a/a=5*042, this formula gives 0*01264. The full

value in the preceding tables was 0*0131; thus even with so short an

ellipsoid as this, the results agree within 4 per cent. With rougher
approximation we have

of which the limit, when a is large, is zero.
For the moment of momentum we have

/
g*(sec f3sec 7)*(1+ cos33) (t~ )y
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or, with rougher approximation,

3 /a\f ali,
Ih2* al
of which the limit is infinite.
Again 3 [»*
gain, 2 "\ dara)

A ;[1+y] [loB'S_c]"
Now the function -(log,,-—C ) has aam\glximl/m, when logf- = 14-C

=1'3573, that is when —a:T696.

On comparison with our tables it is obvious that the approximation
is bad, and that the true solution for a maximum is considerably dif-
ferent from the above. Nevertheless this investigation shows that
there is actually a maximum of kinetic energy.

Since F = log,cot (N — ij)="1J3"og"+|I

we have

If we like we may express these several results in terms of the
minor and major axes of the ellipsoid, for 6:c:-ﬁlt and therefore
a3=c2.

Thus AT

*© (1+O(8|_iC)

.= 1—1"2§€‘°’Iog.2—al



