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In the following note an objection is raised against Laplace’s method 

of treating these tides, and a dynamical solution of the problem, 
founded on a paper by Sir William Thomson, is offered.

Let 6, 0  be the colatitude and longitude of a point in the ocean, let £ 
and tj sin 0 be the displacements from its mean position of the water 
occupying that point at the time t, let be the height of the tide, 
and let t  be the height of the tide according to the equilibrium theory; 
let n be the angular velocity of the earth’s rotation, g gravity, a the 
earth’s radius, and 7 the depth of the ocean at the point 0, 0.

Then Laplace’s equations of motion for tidal oscillations are—

The only case which will be considered here is where the depth of 
the ocean is constant, and we shall only treat the oscillations of long 
period in which the displacements are not functions of the longitude.

As the motion to be considered only involves steady oscillation, we 
assume—

Y- • -(I)

And the equation of continuity is—

(2)

jt — ecos (2 

\  — h cos (2

£ =  xcos (Znft+et) 

ij — y sin (2 n

u — h—e

Hence, by substitution in (1), we have
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, nzawhere m— —  •
9

Whence a?(/3—cos2# ) = - iKJ J 4m dd

• a m  1 1 COS#cZtt
17 V '  t 4m /  <Z#

Then substituting for x and y in (2), which, when 7 is constant 
and 7] is not a function of 0, becomes

fc« +  -^ 4 (? s in < ? )= 0 ,  sm #d#vs ' ’

w e *et + 4” (“ + g)= o-

This is Laplace’s equation for tidal oscillations of the first kind.* In 
these tides /  is a small fraction, being about Jg- in the case of the 
fortnightly tide, and e the coefficient in the equilibrium tide is equal 
to E Q —cos2#), where Eis a known function of the elements of the 
orbit of the tide-generating body, and of the obliquity of the ecliptic.

If now we write ^—4emajy, and cos 6, our equation becomes

. . .  & K S - * * * * " ? ? *  • • ■ • (4)
In treating these oscillations Laplace does not use this equation, 

but seeks to show that friction suffices to make the ocean assume at 
each instant its form of equilibrium. His conclusion is no doubt 
true, but the question remains as to what amount of friction is to be 
regarded as sufficing to produce the result, and whether oceanic tidal 
friction can be great enough to have the effect which he supposes it 
to have.

The friction here contemplated is such that the integral effect is 
represented by a retarding force proportional to the velocity of the 
fluid relatively to the bottom. Although proportionality to the square 
of the velocity would probably be nearer to the troth, yet Laplace’s 
hypothesis suffices for the present discussion. In oscillations of the 
class under consideration, the water moves for half a period north, and 
then for half a period south.

How in systems where the resistances are proportional to velocity, 
it is usual to specify the resistance by a modulus of decay, namely, 
that period in which a velocity is reduced by friction to e~l or 
1-t-2‘783 of its initial value ; and the friction contemplated by Laplace

* ‘ Mecanique Celeste.*



is such that the modulus of decay is short compared with the semi­
period of oscillation.

The quickest of the tides of long period is the fortnightly tide, hence 
for the applicability of Laplace’s conclusion, the modulus of decay 
must be short compared with a week. Now it seems practically 
certain that the friction of the ocean bed would not much affect the 
velocity of a slow ocean current in a day or two. Hence we cannot 
accept Laplace’s hypothesis as to the effect of friction.

We now, therefore, proceed to the solution of the equation of 
motion when friction is entirely neglected.

The solution here offered is indicated in a footnote to a paper by 
Sir William Thomson ( ‘ Phil. Mag.,’ vol. 50, 1875, p. 280), but has 
never been worked out before.

The symmetry of the motion demands that u, when expanded in 
a series of powers of fi, shall only contain even powers of /i.

Let us assume then

■^~p % = b ^ + b ^ +  - + B**&**1+  • • •

Then

1 = ^ = B 1« + (B S- B 1),.3 +  . . . + (B !itl- B » - 1)/‘2i+,+  • • •

j ^ $ ‘ i ^ ] = B i + H B s ~ B^ +  ■■■ + (2 i+ 1) w < « - - c - « > 2'+
. . . .  (5)

1886.] Dynamical llieory o f the Tides of Long Period. 339

Again

^  + . . .  +(B„_1- . / i>B,1+1> “ « +  . .  .

«  =  C - l 1f 2B * +  { (B 3- p B 3) ^ +  . . .  + I ( B ^ - / * B , ,_ > * +  . . . ,
... (6)

where Gis a constant.

Then substituting from (5) and (6) in (4 ), and equating to zero 
the successive coefficients of the powers of /i, we find,

0  — —l E + B J p  v

B , - B 1(l-I /» /J )+ fc > B  =  0. . . . .  . . . . .  .(7)
B » -!(l—sjs+n/5/*)—MEM)0Bii-» =  o



Thus the constants 0  and 1?3, B~, &c., are all expressible in terms 
of Bv

We may remark that if

"2 • F • A®—l ~  or J5_1=  227,

then the general equation of condition in (7) may be held to apply for 
all values of i from 1 to infinity.

Let us now write it in the form—
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# “ = 1  .................... (8)-°2i—1 2
When i is large, P 2;+i/-P2;-i either tends to become infinitely small, 

or it does not do so.
Let us suppose that it does not tend to become infinitely small. 

Then it is obvious that the successive B 's tend to become equal to one 
another, and so also do the coefficients B-u-—/ 22 ? i n  the expression 
for dujdfi.

Hence ^ - —L+  —-5, where L, M  are finite, for all values of u.d/jL i  —/«/
(lu _____j /

Hence — = — B V  1 — iB + — 7=  , and therefore * is infinite whendd r  V l - ^
jli = 1  at the pole, and dg/dt is infinite there also.

Hence the hypothesis, that B2i+lIB2i_1 does not tend to become
infinitely small, gives us infinite velocity at the pole. But with a
globe covered with water this is impossible, the hypothesis is negatived,
and B.2i+1/B.2i_,tends to become infinitely small.

This being established let us write (8) in the form—

i z 5________________ 2i(2 i+ l ) P

B>%-s 1 STTiT+T) • • -(9)

By repeated applications of (9) we have in the form of a continued 
fraction

1 +

2<(ji +  l)

___1___/
( 2 i + 2 ) ( 2 i + 8 ) f 4- (•2i+4)(2i+5)r

[ +  & C

{2 i+ 2)(2 i+ 3( (2*+4)(2i+5)<r / 2/*
. . . (10)

And we know that this is a continuous approximation, which must 
hold in order 1 0  satisfy the condition that the water covers the whole 
globe.

Let us denote this continued fraction by —Nu 
Then, if we remember that —227, we have

B l= 2EN 1,^ = - N 2, + N S, &c.,
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so that

J?8=  ~-2JBN1N9t P 6= - 2  E N ^ ^ s, Ac.

and 0 = - J ® + 2 - M .

Then the height of tide £ is equal to h cos (2r>ft +  a), the equilibrium 
tide t  is equal to E(%—f£) cos (2 nft+a ),and we have

h = u +  E(% —/i2)

= C ' + ^ - ( ^ + i / 2-B1V 2 + K A - / 2-S3)^4 + K -5 3 - / 2-B5)^6+- • •

! = ?w, _  (1 +/»»-av ‘ - i N i ^ a + / w s> « + . .
E  p

Now when /3=40, we have 7=^5-X 4m a= ^ -a =  7260 feet; so that 
y3=40 gives an ocean of 1200 fathoms.

With this value of /3, and with / =  *0365012, which is the value for 
the fortnightly tide, I find

^=3*040692, 2V2= r20137 , # 3=  *66744, # 4=  *42819, # 5 =*29819, 

N 6=  *21950, # 7=  *16814, # 8=*13287, # 9=*107, # 10=*1, &c.

These values give

^2^=*15203, 1 + / 2# i= l'0 0 4 1 , ^ # i ( l  + /2 # 2) =  1*5228,

^ # * ( 1  + / 2# 3)= r 2 1 8 7 , i # 1# 3 # 3( l + / 2# 4)=*6099,

W i  • • • # 4( l + / 2# 5) = ’2089 i# x  . . . # 5 ( 1  + / 3# e) =  *0519,

Wi• > ? W  + / 3-N7)=-0098, £ # !  . . . # 7( 1 + / 2# 8) = *0014,

i # ! . . . # 8( H - /3# 9) =  *00017, &c.
So that

4 -  =  *1520—r0041/ti3+ l*5228/t4—l*2187/i.6+ *6099 .̂8—*2089/t10Hi
+  *0519Ati2-*0098/a14+-0014/t16-*0002/ti8-)- . :

At the pole, where /*=1, the equilibrium tide is —f a t  the 
equator it is + \E .

Now at the pole h =  —E  x *1037= — x *1556,

and at the equator h =  +Ex *1520= *4561.

In a second case, namely, with an ocean four times as deep, so that 
/3 = 10 , I find
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—•= *2368 - 1-0016^2 +  •5910/t4—• 1627^+*0258^ _  -0026^ + -0002^*

At the pole Ti= —jE7x’3137= —fU x '471 ,

at the equator h= +Ex ’2363= -j-|U  X -709.

With a deeper ocean we should soon arrive at the equilibrium value 
for the tide, for N2, N s, &c., become very small, and 2N f(i becomes 
equal to

These two cases, j3=40, /3=10, are two of those for which Laplace 
has given solutions in the case of the semi-diurnal and diurnal tides. 
We notice that, with such oceans as we have to deal with, the tide of 
long period is certainly less than half its equilibrium amount.

In Thomson and Tait’s ‘ Natural Philosophy ’ (edition of 1883) I 
have made a comparison of the observed tides of long period with the 
equilibrium theory. The probable errors of the results are large, 
but not such as to render them worthless, and in view of the present 
investigation it is surprising to find that on the average the tides of 
long period amount to as much as two-thirds of their equilibrium 
value.

The investigation in the ‘ Natural Philosophy ’ was undertaken in 
the belief of the correctness of Laplace’s view as to the tides of long 
period, and was intended to evaluate the effective rigidity of the 
earth’s mass.

The present result shows us that it is not possible to attain any 
estimate of the earth’s rigidity in this way, but as the tides of long 
period are distinctly sensible, we may accept the investigation in the 
‘Natural Philosophy ’ as generally confirmatory of Thomson’s view 

as to the great effective rigidity of the whole earth’s mass.
There is one tide, however, of long period of which Laplace’s argu­

ment from friction must hold true. In  consequence of the regression 
of the nodes of the moon’s orbit there is a minute tide with a period 
of nearly nineteen years, and in this case friction must be far more 
important than inertia. Unfortunately this tide is very minute, and 
as I have shown in a Report for 1886 to the British Association on 
the tides, it is entirely masked by oscillations of sea level produced 
by meteorological or other causes.

Thus it does not seem likely that it will ever be possible to evaluate 
the effective rigidity of the earth’s mass by means of tidal observa­
tions.


