
blue-green to blue by nitric and sulphuric acids, and generally blue 
green with iodine in iodide of potassium (in the solid state).

On isolation of the yellow constituent of enterochlorophyll b\ 
saponification and extraction with petroleum ether, I found that it 
generally showed only one band, or sometimes two, but these bands 
generally gave different measurements from those of plant chloro­
phyll.

To see whether symbiotic algae were present in the organs yielding 
enterochlorophyll, I examined fresh frozen sections, or portions of 
the organ teased out in salt solution, but the results were negative. 
On steeping such preparations, first in alcohol, then in weak solution of 
caustic soda, and neutralising with acetic acid, and afterwards testing 
with a solution of iodine in iodide of potassium and with Schultze’s 
fluid, I never obtained evidence of the presence of starch or cellulose. 
Hence, apart from the absence of symbiotic algae under the microscope, 
this result negatives their presence and also that of food chlorophyll.] 
The morphology of enterochlorophyll was studied in similar prepara-l 
tions, and on the whole it appears to be present dissolved in oil 
globules and in granules, both of them enclosed in the epithelium 
lining the liver tubes. It also occurs dissolved in the protoplasm of 
the liver cells, and these appearances vary slightly in different 
cases.

It would therefore appear that enterochlorophyll is built up in the 
organ containing i t ; that it is a chlorophyll, of which there are 
several in animals, and that it is composed of two constituents, of 
which one resembles closely the corresponding constituent of plant 
chlorophyll, while the other is generally slightly different, but that no 
essential difference exists between the respective pigments is proved 
by the fact that the constituents of both may be obtained crystallised 
in the same form.

In enterochlorophyll there is probably a more intimate union 
between the constituents than in plant chlorophyll.

All readings are reduced to wave-lengths, and the most important 
spectra mapped in the accompanying charts. The appearance of 
enterochlorophyll under the microscope in different cases is also 
shown in the accompanying drawing, as well as the crystals referred 
to above.
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III. “ Note on a Previous Paper.” By G. H. Darwin, F.R.S., 
Fellow of Trinity College and Plumian Professor in the 
University of Cambridge. Received March 19, 1885.

The paper entitled “ On the Stresses caused in the Interior of the 
Earth by the Weight of Continents and Mountains ” (“ Phil. Trans.,”,-
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Part I, 1882, p. 187) has teen found to be erroneous in certain points. 
The errors, however, do not touch the physical conclusions there 
attained. As this note has importance only in connexion with the 
paper, I proceed in the form of an appendix, without explanation of 
the notation.
I In the first place—

Throughout the paper the normal stresses P, Q, R require an addi­
tional term Wi. The only function of these stresses used in obtaining 
physical results is P —R, and it remains unchanged when this correc­
tion is made.

The error takes its origin in § 1/ Thomson’s .solution (1) when 
reduced to the form applicable to the incompressible solid, is the solu­

tion of the equations + i'V2«:=~t—> an(f two others. The solution ax ax
CLT)

required is that of —j -  +  vV 2«= 0, and two others. The involved

in my solution is not the potential of a true bodily force, but only an 
“ effective potential ” producing the same strains as those due to the 
weight of the continents and mountains, but causing a different 
hydrostatic pressure. When, therefore, p  is determined from Thom­
son’s solution, that pis really equal to p +  of the problem of the

continents. Hence equation (3) should be p = —^1 +  instead

of p =  —  —  Wi.The correction to (3) must be carried on through the

rest of the paper, and obviously it merely adds Wi to the stresses 
P, Q, R, leaving P —R, P —Q, Q—R unchanged.

The error would have been avoided had I, as suggested on p. 190, 
worked directly from the equations of equilibrium of the elastic in­
compressible solid, instead of from Thomson’s solution.

When the solid is compressible, this method of “ effective poten­
tial” (see “ The Tides of a Viscous Spheroid,” “ Phil. Trans.,” Part I, 
1879, pp. 7—9) for including all the effects of gravitation is not appli­
cable without certain additional terms in «, /3, 7. Hence in § 10 where 
the solid is treated as being compressible the expressions for the 
stresses are incomplete. It will be found, however, that this incom­
pleteness does not extend to the case of the mountains and valleys on 
the mean level surface, and that portion of the section remains cor­
rect. It would not be difficult to make the requisite corrections to 
the earlier part of the section, but I do not think it worth while to 
do so.

In the second place—
On p. 191 the following passage occurs :—
“ It may be seen from considerations of symmetry that if Wi be a 

zonal harmonic, two of the principal stress-axes lie in a meridional



plane, and the third is perpendicular thereto. Moreover the great '! 
and least stress-axes are those which lie in that plane.”

And in a foot-note on p. 200—
“ It is easy to see that if a viscous sphere he deformed into th 1 

shape of a zonal harmonic, the flow of the fluid must be meridional 
and from this we may conclude that in the elastic sphere the plane of 
greatest and least principal stresses must be also meridional. This 
has already been assumed to be the case in the present paper.”

As one of the examiners for the Smith’s Prizes at Cambridge, I 
have had placed before me an essay by Mr. Charles Chree, of King’s 
College, in which he considers, amongst other points, the difference 
of principal stresses in an elastic sphere strained under the influence 
of the forces due to a potential expressed by the second zonal har­
monic. In this essay Mr. Chree has pointed out that the conclusion 
thus arrived at by general reasoning is erroneous. His analytical 
treatment of the problem is entirely different from mine, and I cannot 1 
therefore, avail myself of his actual work in amending the error 
which he has pointed out and corrected.

It is clear that, in the limiting case of the zonal harmonic where 
the surface becomes a series of parallel mountains and valleys on a 
flat surface, the principal stress parallel to the mountains must be 
zero, and the above reasoning has led to a correct conclusion.

But in the case of the second zonal harmonic, with either excess 
or deficiency of matter at the pole, there is a tendency for the equa­
torial regions to be either squeezed out or crushed in. Now an out­
ward squeeze necessitates that the greatest pressure shall be perpen­
dicular to the meridian, and this is contrary to the general conclusion 
quoted above. My error lay in overlooking this outward or inward 
tendency in the equatorial matter.

The conclusion is therefore wholly right in the case of the moun­
tains and valleys, and at least partially wrong in the case of spheroidal 
deformation of the globe.

The data for examining into this question rigorously are given in 
my paper, and the best way of treating the matter is to rewrite § 5 
on—
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The State of Stress due to Fllipticity of Figure or to Tide-generating
Forces.

When the effective disturbing potential Wi is a solid harmonic of 
the second degree, the solution found will give the stresses caused by 
oblateness or prolateness of the spheroid. It will also serve for the 
case of a rotating spheroid with more or less oblateness than is 
appropriate for the equilibrium figure. When an elastic sphere is 
under the. action of tide-generating forces, the disturbing potential
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is a solid harmonic of the second degree, and therefore the present 
solution will apply to this case also.

If we extract the case i=  2 from Tables I, II, III, and put 2 in 
(26), and substitute colatitude 6 for latitude l, we have after some 
simple reductions—

19 (P — W i)=  16a2—(19+3 cos 20)r3'j 
1 9 (R - W2) =  -3 2 a 3+  (29 + 3  cos 2 I 
19(Q_-jF-2) — 16a3- (13+  9 cos 20>2 f  * '
19T =  3 sin 20r2 J

(a).

[Note the introduction of W2 in the P, Q, R, in accordance with 
the first correction.]

Let Nlr N2, N3, be the three principal stresses, each diminished by
W2, so that—

= i ( p + R) ± i v / { ( P - R ) 2+4T2} j

Ns+Fi =Q I
(6).

Then-

I9N11 = —8a3+5r2+3-v/{64(a2—r2)2+?^—16r2(a2—r2) cos 20} 1 ^  
19N2 == 16a2—13r2—9r2 cos 20 J

Now let us find the surfaces, if any, over which N2= N 1 or N3. 
They are obviously given by—

24a3—18r2—9r3co s2 0 = + 3 \/{6 4 (a 2—r2)3-f • t &c.}4

This easily reduces to—

r2( l — cos20)[32a3—20r2—9r3( l +  cos 20)]=O -. 4 (d).

Thus the solutions are—
r = 0
0 = 0  and 7r

and 32a3—20(*2 +  y3) —38z2= 0
(e).

By trial it is easy to see that at the centre and all along the polar 
axis N2= N 1} and that inside of the ellipsoid 10(aj2+ y 3) +1923=16a3, 
N2 is greater than N1} and outside it is less.

Hence inside of the ellipsoid N2—N3 and outside of it Nj—N3 
is the stress-difference. N2—N3 nowhere vanishes so long as N2 is
not equal to Nls and Nx—N3 vanishes where r = § \/2  . '9428a and
6=0, which is inside of the region for which Nj—N3 is the stress- 
difference-. This is the only point in the whole sphere for which the 
stress-difference vanishes.

The ellipsoid of separation cuts the sphere in colatitude 35° 16'.
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If  we pu t A for stress-difference, then between the  centre and thj 
ellipsoid—

----- [Apr. 30,

19A= 24a2—18r2—9r2cos20+ 3  •/{64 (a2— r2) 2 +  r4—16 (a2—r2)r2cos 20}

* H * (A !
and between the polar surface regions and the ellipsoid_

19A=6-v/ { 64 (a2—r2)2+ r4—-16(a2—r2)r2cos20} . . (g\
This last also holds for the whole polar axis, along which__

19A =  6(8a2—9r2) or 6(9r2—8a2).

[In the paper the form (g) for A was taken as applicable to the 
whole sphere ; the maximum value of A arises from the form (g), and 
was therefore correctly computed.]

In order to find the actual value of A in any special case, we have 
to multiply the expression for A by appropriate factors, determined in 
the paper. For the present it will be convenient to omit these 
factors.

We may now from ( f )and (gr) determine the distribution of 
stress-difference throughout the sphere.

By computation and graphical interpolation, I have drawn the 
annexed figure, showing the curves of equal stress-difference through-

Diagram showing curves of equal Stress-difference due to the weight of 2nd 
harmonic inequalities or to tide-generating force.
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jut a meridional section of the sphere. The numbers written on the 
curves give the values of 19A, when the radius of the sphere is unity. 
Ihe point marked 0 is that where A vanishes.

The dotted curve is the ellipse of separation (e) cutting the circle 
in colatitude 35° 16'.

; i Over the polar cap and at the surface 19A is constant and equal to 
.6 ; at the surface from col at. 35° 16' to the equator 19A increases 
from 6 to 18, varying as the square of the sine of the colatitude, 
i At the centre 19A is 48, being eight times the polar superficial 
value.

Beginning with the first sentence of p. 203 the remainder of § 5 
will hold good. It is well to observe, however, that where surface 
stress-difference is spoken of, it must be taken as referring to the 
polar caps only, the stress-difference at the equator being three times 
las great. It is worth while comparing the figure 1 of the paper 
(Plate 19) with the figure now given.

We now come to the case of—

The Stresses due to the even Zonal Harmonics.
The complete determination of the regions within which No—Ns 

and Nx—Ng are the proper measures of stress-difference might be 
somewhat difficult. As, however, these harmonics are only used for 
the determination of stress-difference in the equatorial regions, it is 
sufficient to find the boundary of the regions for that part of the 
sphere.

We see from (22) that <\/{(P—R)2+4T 2} only differs from P —R 
by terms which depend on the square of the sine of the latitude.

Hence as far as the first power of sin Z we have
N ,= P  - W hN2= Q  - W ifN3= R —Fi.

Therefore if we neglect terms depending on the square of the sine 
of the latitude, we have from (22),

|  ™ ' = ^ + B 0a*, 3 |= C V » + I W .

Then substituting, for A0,B0, &c., their values from (23), (24), (26), 
and effecting some easy reductions, we find,

TTZ■ i£ l=  i3(i +  2) (a2—r2) .
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From this we see that Nx is always positive hut vanishes at the 

surface, N2 is always positive but does not vanish at the surface, and 
Ng is always negative.

Hence at the surface and for some distance beneath it, the stress- 
difference is N2—N3; but below the surface at which ISTj becomes 
equal to N2, we have — Ns as the stress-difference.

This surface is determined by

whence

i \ i +  2) («2-r3) =i*(a2-r2) + - — a2.
i —1

rl = iLHf 
0,2 $ — 2

Solving for the successive even values of i, we find, when 
• ¥fc=2, - = 0 ,  as we already know. a

i = 4, -=0-8944, a

i= 6 , ^=0-9562, a

i— 8, -=0-9759, 
a

■i=10, -=0-9847. 
a

In the paper — N3 was always taken as being the stress-difference, 
and we now see that even when 4, the region is very thin in 
which this is untrue and where IST3—N3 is the proper measure. For 
the higher harmonics it soon becomes negligeable.

This explains the transition from the incorrectness of the treatment 
in the paper of the case of the second harmonic to the correctness of 
the treatment of the mountain ranges.

On looking at § 7 and the accompanying figures we see that the 
maximum stress-difference occurs far within the region within which 
hT3 becomes the mean principal stress. Thus § 7 may be permitted to 
stand, save that in fig. 4, Plate 19, the ordinates of the. curves 
i —4, 4=6, &e., are to be slightly augmented at the surface where 
r —a. It is easy to see what small alterations are to be made in 
Table VI, and in the subsequent discussion, but clearly nothing 
material from a physical point of view need be amended.

It may be remarked in conclusion that, whilst it is proper to correct 
the mathematical errors in this paper, the physical conclusions remain 
untouched.


