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Thalén and that given by Boisbaudran for the bright line to which we
assume it to correspond, it was determined in the way above described,
and must not be taken to have more importance. By our method of
working, the very high dispersive power required for the specific
identification of any substance by the determination of an individual
wave-length is avoided; as we depend on the greatly diminished
likelihood of error when several groups of lines of the same substance
are seen to be continually present at the time of one or more reversals.
It was the necessity of being able to rapidly sweep the entire spectrum
for the above purpose that caused us to limit the dispersion.
A large majority of the wave-lengths given by Thalén were obtained
by means of the moderate dispersion of one bisulphide of carbon prism,
a less dispersion than we have used; and it would be incorrect to
suppose that no enduring work in this field of spectroscopy can be
effected except with the enormous dispersive power which Mr. Lockyer
recommends.

VIIIL “The Determination of the Secular Effects of Tidal Friction
by a Graphical Method.” By . H.DArwiN, M.A., formerly
Fellow of Trinity College, Cambridge. Communicated by
J. W. L. Gramsuggr, M.A., F.R.S. Received May 31, 1879.

Suppose an attractive particle or satellite of mass m to be moving
in a circular orbit, with an angular velocity Q, round a planet of mass
M, and suppose the planet to be rotating about an axis perpendicular
to the plane of the orbit, with an angular velocity »; suppose, also,
the mass of the planet to be partially or wholly imperfectly elastic or
viscous, or that there are oceans on the surface of the planet; then
the attraction of the satellite must produce a relative motion in the
parts of the planet, and that motion must be subject to friction, or, in
other words, there must be frictional tides of some sort or other.
The system must accordingly be losing energy by friction, and its
configuration must change in such a way that its whole energy
diminighes.

Such a system does mnot differ much from those of actual planets
and satellites, and, therefore, the results deduced in this hypothetical
case must agree pretty closely with the actual course of evolution,
provided that time enough has been and will be given for such
changes. :

Let C be the moment of inertia of the planet about its axis of

rotation ;
7 the distance of the satellite from the centre of the planet ;
h the resultant moment of momentum of the whole system ;
¢ the whole energy, both kinetic and potential of the system.
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It will be supposed that the figure of the planet and the distribution
of its internal density are such that the attraction of the satellite causes
no couple about any axis perpendicular to that of rotation.

Then the two bodies revolve in circles about their common centre of
inertia with an angular velocity Q, and, therefore, the m. of m. of
orbital motion is

uf_mr Q+ ( My )‘39__ Mm_ o
M+m M+m M+m
Let 1 be attraction between unit masses at unit distance.
Then, by the law of periodic times, in a circular orbit, Q*3=pu(M +m)
whence

Q2= pd(M+m) Q%

And the m. of m. of orbital motion=psMm (M +m)3Q%,
The m. of m. of the planet’s rotation is Cn,

and therefore h=C { n+p’§l_v1[_én(M+m)"%Q’%} ... (D,

Again, the kinetic energy of orbital motion is

MT 2 M7 _zl[qn
3 M Q2 44m QL—L Q=18 M (M 103
2 (M -+ m) i (M +m T MFm sudMm(M+m) §

The kinetic energy of the planet’s rotation is 3Cn?®
The potential energy of the system is '

,ui}[ﬁ_ — wEMm (M +m)—3Q3.
r

Adding the three energies together
2e=C {n”‘ 2ﬂ[m(ﬂ/[-l—m)"lQ } . (D).

Now, suppose that by a proper choice of the wunit of time,

M’" (M +m)~% is unity, and that by a proper choice of units of

1ength or of mass C is unity,* and
Let 2=Q73, y=nmn, Y =2e.

* Let v=ﬂ.£, then if g be the mean gravity at the surface of the plavet, and if «
m

be its mean radius,

p(M+m) = ga‘ﬂli.f
and ugM’)n(M+m)"‘—[g Lty 3_M;=J|[aﬂ~:-{(‘101')2(1 +v)}%
v 1+ g

Then if the planet be homogeneous, and differ infinitesimally from a sphere,
{=2Ma? and]
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It may be well to notice that # is proportional to the square root of
the satellite’s distance from the planet.
Then the equations (1) and (2) become

h=y+2o . . . . . . . . (3),

L N O}
=

2

Y=y2—

]

&

(3) 1is the equation of conservation of moment of momentum, or

shortly, the equation of momentum ; (4) is the equation of energy.
Now, consider a system started with given positive (or say clock-
wise) moment of momentum %; we have all sorts of ways in which it
may be started. If the two rotations be of opposite kinds, it is clear
that we may start the system with any amount of energy however
great, but the true maxima and minima of energy compatible with the
d

given moment of momentum are given by CZY...O,
@
1_
or x—h+ =0,
a?
or wt—hat+1=0 . . . . . . . ().

We shall presently see that this biquadratic has either two real
roots and two imaginary, or.all imaginary roots.

This biquadratic may be derived from quite a different considera-
tion, viz., by finding the condition under which the satellite may
move round the planet, so that the planet shall always show the same
face to the satellite, in fact, so that they move as parts of one rigid
body.

The condition is simply that the satellite’s orbital angular velocity

M%Z‘Im(M+m) P=14 2{ (m}) 1+ )} = suppose

in the case of the earth, considered as heterogencous, the 2 would be replaced by

about 4
It is clear that s is a time ; and in the case of the earth and moon (with »=82),
s#=3 hrs. 44 mins., if the earth be homogeneous, and
58
83

#=2 hrs. 41 mins. if the earth be heterogeneous.

For the units of length and mass we have only to choose them so that 2Ma?, or
1Ma?, may be unity.
‘With these units it will be found that for the present length of day »=-8056
(homog.) or 7026 (heterog.), and that
h="8036[1 +4:01] =403 (homog.),
or h="7026[1+4'38]=3"78 (heterog.)
For the value 438 see Thomson and Tait’s ¢ Nat. Phil.,”” § 256, where tidal fric-
tion is considered.
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Q=mn the planet’s angular velocity round its axis; or since n=y and
Q~5=g, therefore 4 =—1~.
5

By substituting this value of y in the equation of momentum (8),

we get ag before
wt—hat4+1=0 . . . . . . . (5).

In my paper on the ¢Precession of a Viscous Spheroid,”* I
obtained the biquadratic equation from this last point of view only,
and considered analytically and numerically its bearings on the history
of the earth.

Sir William Thomson, having read the paper, told me that he
thought that much light might be thrown on the general physical
meaning of the equation, by a comparison of the equation of con-
servation of moment of momentum with the energy of the system for
various configurations, and he suggested the appropriateness of
geometrical illustration for the purpose of this comparison. The
method which is worked out below is the result of the suggestions
given me by him in conversation.

The simplicity with which complicated mechanical interactions may
be thus traced out geometrically to their results appears truly remark-
able.

At present we have only obtained one result, viz.: that if with
given moment of momentum it is possible to set the satellite and
planet moving as a rigid body, then it is possible to do so in two
ways, and one of these ways requires a maximum amount of energy
and the other a minimum ; from which it is clear that one must be a
rapid rotation with the satellite near the planet, and the other a slow
one with the satellite remote from the planet.

Now, consider the three equations,

h=y+e . . . (6),

Y=(h—a)—1 . . . . . . (),
7

edy=1 . . . . . . . . (8.

(6) is the equation of momentum; (7), that of energy; and (8)
we may call the equation of rigidity, since it indicates that the two
bodies move as though parts of one rigid body.

Now, if we wish to illustrate these equations geometrically, we may
take as abscissa @, which is the m. of m. of orbital motion; so that the
axis of # may be called the axis of orbital momentum. Also, for
equations (6) and (8) we may take as ordinate y, which is the m. of
m. of the planet’s rotation; so that the axis of y may be called the
axis of rotational momentum. For (7) we may take as ordinate Y,

* Of which an abstract appears in “ Proc. Roy. Soc.,” No. 191, 1878.
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which is twice the energy of the system; so that the axis of Y may
be called the axis of energy. Then, ds it will be convenient to exhibit
all three curves in the same figure, with a parallel axis of #, we must
have the axis of energy identical with that of rotational momentum.

It will not be necessary to consider the case where the resultant m.
of m. /, is negative, because this would only be equivalent to reversing
all the rotations; thus /4 is to be taken as essentially positive.

Then the line of momentum, whose equation is (6), is a straight
line at 45” to either axis, having positive intercepts on both axes.

The curve of rigidity, whose equation is (3), is clearly of the same
nature as a rectangular hyperbola, but having a much more rapid rate
of approach to the axis of orbital momentum than to that of rotational
momentum.

The intersections (if any) of the curve of rigidity with the line of
momentum have abscissee which are the two roots of the biquadratic
2t—ha?+1=0. The biquadratic has, therefore, two real roots or all
imaginary voots. Then, since 2=0Q7%, it varies as /7, and, therefore,
the intersection which is more remote from the origin, indicates a con-
figuration where the satellite is remote from the planet; the other
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gives the configuration where the satellite is closer to the planet. We
have already learnt that these two correspond respectively to minimum
and maximum energy.

When 2 is very large, the equation to the curve of energy is
Y =(h—=)?, which is the equation to a parabola, with a vertical axis
parallel to Y and distant % from the origin, so that the axis of the
parabola passes through the intersection of the line of momentum
with the axis of orbital momentum.

‘When 2 is very small the equation becomes Y= ——155.«
@
Hence, the axis of Y is asymptotic on both sides to the curve of

energy.

Then, if the line of momentum intersects the curve of rigidity, the
curve of energy has a maximum vertically underneath the point of
intersection nearer the origin, and a minimum underneath the point
more remote. But if there are no intersections, it has no maximum
or minimum.

It is not easy to exhibit these curves well if they are drawn to scale,
without making a figure larger than it would be convenient to print,
and accordingly fig. 1 gives them as drawn with the free hand. As
the zero of energy is quite arbitrary, the origin for the energy curve
is displaced downwards, and this prevents the two curves from cross-
ing one another in a confusing manner. The same remark applies
also to figs. 2 and 8.

Fig. 1is erroneous principally in that the curve of rigidity ought
to approach its horizontal asymptote much more rapidly, so that it
would be difficult in a drawing to scale to distingnish the points of
intersection B and D.

Fig. 2 exhibits the same curves, but drawn to scale, and designed
to be applicable to the case of the earth and moon, that is to say,
when /=4 nearly.

Fig. 3 shows the curves when /=1, and when the line of momentum
does not intersect the curve of rigidity ; and here there is no maxi-
mum or minimum in the curve of energy.

These figures exhibit all the possible methods in which the bodies
may move with given moment of momentum, and they differ in the
fact that in figs. 1 and 2 the biquadratic (5) has real roots, but in
the case of fig. 3 this is not so. Kvery point of the line of momentum
gives by its abcissa and ordinate the square root of the satellite’s
distance and the rotation of the planet, and the ordinate of the
energy curve gives the energy corresponding to each distance of the
satellite.

Parts of these figures have no physical meaning, for it is impossible
for the satellite to move round the planet at a distance which is less
than the sum of the radii of the planet and satellite. Accordingly in



1879.] On the Secular Iffects of Tidal Friction. 175

fig. 1 a strip is marked off and shaded on each side of the vertical
axis, within which the figure has no physical meaning.

rrbrtinl
e e it erin

R A

Since the moon’s diameter is about 2,200 miles, and the earth’s
about 8,000, therefore the moon’s distance cannot be less than 5,100
miles; and in fig. 2, which is intended to apply to the earth and moon
and is drawn to scale, the base of the strip is only shaded, so as not to
render the figure confused. The strip has been accidentally drawn a
very little too broad.

The point P in fig. 2 indicates the present configuration of the
earth and moon.

The curve of rigidity «*y=1 is the same for all values of %, and
by moving the line of momentum parallel to itself nearer or further
from the origin, we may represent all possible moments of momentum
of the whole system.

The smallest amount, of m. of m. with which it is possible to set the
system moving as a rigid body, is when the line of momentum touches
the curve of rigidity. The condition for this is clearly that the
equation a*—ha® +1=0 should have equal roots. If it has equal roots
each root must be $4, and therefore

(Gn)t—h($h)3+1=0.
4
whence h‘:% or h=§§=1'75.

The actual value of / for the moon and earth is about 8%, and hence
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if the moon-earth system were started with less than % of its actual
moment of momentum, it would not be possible for the two bodies to
move so that the earth should always show the same face to the moon.

Again if we travel along the line of momentum there must be some

point for which y2? is a maximum, and since ym3=—Q— there must be

some point for which the number of planetary rotations is greatest
during one revolution of the satellite, or shortly there must be some
configuration for which there is a maximum number of days in the
month.

Now y28 is equal to 23(h—x), and this is a maximum when 2=k
and the maximum number of days in the month is (4)% (h—$h) or

33
%h’t; if & is equal to 4, as is nearly the case for the homogeneous earth

and moon, this becomes 27.

Hence it follows that we now have very nearly the maximum
number of days in the month., A more accurate investigation in my
paper on the ““ Precession of a Viscous Spheroid,” showed that taking
account of solar tidal friction and of the obliquity to the ecliptic the
maximum number of days is about 29, and that we have already
passed through the phase of maximum.

We will now consider the physical meaning of the sevaral parts of
the figures.

It will be supposed that the resultant moment of momentum of the
whole system corresponds to a clockwise rotation.

Now imagine two points with the same abscissa, one on the
momentum line and the other on the energy curve, and suppose the
one on the energy curve to guide that on the momentum line.

Then since we are supposing frictional tides to be raised on the
planet, therefore the energy must degrade, and however the two
points are set initially, the point on the energy curve must always
slide down a slope carrying with it the other point.

Now looking at fig. 1 or 2, we see that there are four slopes in the
cnergy curve, two running down to the planet, and two others which
run down to the minimum. In fig. 3 on the other hand there are
only two slopes, both of which run down to the planet.

In the first case there are four ways in which the system may
degrade, according to the way it was started; in the second only two
ways.

1. Then in fig. 1, for all points of the line of momentum from C
through Ii to infinity, # is negative and y is positive ; therefore this
indicates an anti-clockwise revolution of the satellite, and a clockwise
rotation of the planet, but the m. of m. planetary rotation is greater
than that of the orbital motion. The corresponding part of the curve
of energy slopes uniformly down, hence however the system be started,



1879.] On the Secular Effects of Tidal Friction. 177

for this part of the line of momentum, the satellite must approach the
planet, and will fall into it when its distance is given by the point .

ii. For all points of the line of momentum from D through F to
infinity,  is positive and y is negative; therefore the motion of the
satellite is clockwise, and that of the planetary rotation anti-clockwise,
but the m. of m. of the orbital motion is greater than that of the
planetary rotation. The corresponding part of the energy curve
slopes down to the minimum b. Hence the satellite must approach
the planet until it reaches a certain distance where the two will move
round as a rigid body. It will be noticed that as the system passes
through the configuration corresponding to D, the planetary rotation
is zero, and from D to B the rotation of the planet becomes clockwise.

If the total moment of momentum had been as shown in fig. 3, then
the satellite would have fallen into the planet, because the energy
curve would haveno minimum.

From 1 and ii we learn that if the planet and satellite are set in
motion with opposite rotations, the satellite will fall into the planet, if
the moment of momentum of orbital motion be less than or equal
to or only greater by a certain critical amount,* than the moment
of momentum of planetary rotation, but if it be greater by more than
a certain critical amount the satellite will approach the planet, the
rotation of the planet will stop and reverse, and finally the system will
come to equilibrium when the two bodies move round as a rigid body,
with a long periodic time.

iii. 'We now come to the part of the figure between C and D. For
the parts AC and BD of the line AB in fig. 1, the planetary rotation
is slower than that of the satellite’s revolution, or the month is shorter
than day, as in one of the satellites of Mars.  In fig. 3 these parts
together embrace the whole. In all cases the satellite approaches the
planet. In the case of fig. 3, the satellite must ultimately fall into
the planet; in the case of figs. 1 and 2 the satellite will fall in if its
distance from the planet is small, or moveround along with the planet
as a rigid body if its distance be large.

For the part of the line of momentum AB, the month is longer than
the day, and this is the case of all known satellites except the nearer
one of Mars. As this part of the line is non-existent in fig. 3, we see
that the case of all existing satellites (except the Martian one) is
comprised within this part of figs. 1 and 2. Now if a satellite be
placed in the condition A, that is to say, moving rapidly round a
planet, which always shows the same face to the satellite, the condi-
tion is clearly dynamically unstable, for the least disturbance will
determine whether the system shall degrade down the slopes ac or ab,
that is to say, whether it falls into or recedes from the planet. If

#* With the units which are here used the excess must be more than 4+3%; see
further back.
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the equilibrium breaks down by the satellite receding, the recession
will go on until the system has reached the state corresponding to B.

The point P, in fig. 2, shows approximately the present state of the
earth and moon, viz., when #=32, y="8.

It is clear that, if the point I, which indicates that the satellite is
just touching the planet, be identical with the point A, then the two
bodies are in effect part of a single body in an unstable configuration.
If, therefore, the moon was originally part of the earth, we should
expect to find A and ! identical. The figure 2, which is drawn to
represent the earth and moon, shows that there is so close an approach
between the edge of the shaded band and the intersection of the line of
momentum and curve of rigidity, that it would be scarcely possible to
distinguish them on the figure. Hence, there seems a considerable
probability that the two bodies once formed parts of a single one,
which broke up in consequence of some kind of instability. This view is
confirmed by the more detailed consideration of the case in the paper
on the ¢ Precession of a Viscous Spheroid,” of which only an abstract
has as yet been printed.

Hitherto the satellite has been treated as an attractive particle, but
the graphical method may be extended to the case where both the
satellite and planet are spheroids rotating about axes perpendicular to
the plane of the orbit.

Suppose, then, that % is the ratio of the moment of inertia of the
satellite to that of the planet, and that z is equal to the angular velocity
of the satellite round its axis, then %z is the moment of momentum of
the satellite’s rotation, and we have

h=a-+y+kz for the equation to the plane of momentum,
2e=y9+7sz9-—~10_ for the equation of energy,
;)

and 2%y =1, 2%2=1 for the equation to the line of rigidity.
The most convenient form in which to put the equation to the
surface of energy is
1

where E, y, z are the three ordinates.

The best way of understanding the surface is to draw the contour-
lines of energy parallel to the plane of yz, as shown in fig. 4.

The case which I have considered may be called a double-star
system, where the planet and satellite are equal and s=1. Any other
case may be easily conceived by a stretching or contraction of the
surface parallel to 2.

It will be found that, if the whole moment of momentum 7% has
less than a certain critical value (found by the consideration that

D T
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4 —ha3 4+ 2=0 has equal roots), then the surface may be conceived as
an infinitely narrow and deep ravine, opening out at one part of its
course into rounded valleys on each side of the ravine. In this case
the contours would resemble those of fig. 4, supposing the round closed
curves to be absent. The course of the ravine is at 45° to the axes of
y and 2, and the origin is situated in one of the valleys, which is less
steep than the valley facing it on the opposite side of the ravine. The
form of a section perpendicular to the ravine is such as the curve of
energy in fig. 3, so that everywhere there is a slope towards the
ravine.

el s ol retots e e i of

Contowr lines of energy surlice
Jer twe egual stars,
revolving about one anotlher.

Tvery point on the surface corresponds to one configuration of the
system, and, if the system be guided by a point on the energy surface,
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that point must always slide down hill. It does not, however, neces-
sarily follow that it will always slide down the steepest path. The fall
of the guiding point into the ravine indicates the falling together of
the two stars.

Thus, if the two bodies be started with less than a certain moment
of momentum, they must ultimately fall together.

Next, suppose the whole m. of m. of the system to be greater than
the critical value. Now, the less steep of the two valleys of the
former case (viz., the one in which the origin lies) has become more
like a semicircular amphitheatre of hills, with a nearly circular lake at
the bottom; and the valley facing the amphitheatre has become merely
a falling back of the cliffs which bound the ravine. The energy curve
in fig. 2 would show a section perpendicular to the ravine through the
middle of the lake.

The origin is nearly in the centre of the lake, but slightly more
remote from the ravine than the centre.

In this figure & was taken as 4, and % as unity, so that it represents.
a system of equal double stars. The numbers written on each con-
tour give the value of E corresponding to that contour.

Now, the guiding point of the system, if on the same side of the
ravine as the origin, may either slide down into the lake or into the
ravine. If it falls into the ravine, the two stars fall together, and if to
the bottom of the lake, the whole system moves round slowly, like a
rigid body.

If the point be on the lip of the lake, with the ravine on one side
and the lake on the other, this corresponds to the motion of the two
bodies rapidly round one another, moving as a rigid body; and this
state is clearly dynamically unstable.

If the point be on the other side of the ravine, it must fall into it,
and the two stars fall together.

Tt has been remarked that the guiding point does not necessarily
slide down the steepest gradient, and of such a mode of descent
illustrations will be given hereafter.

Hence it is possible that, if the guiding point be started somewhere
on the amphitheatre of hills, it may slide down until it comes to the
lip of the lake. As far as one can see, however, such a descent
would require a peculiar relationship of the viscosities of the two stars,
probably varying from time to time. It is therefore possible, though
improbable, that the unstable condition where the two bodies move
rapidly round ome another, always showing the same faces to one
another, may be a degradation of a previous condition. If this state
corresponds with a distance between the stars less than the sum of the
radii of their masses, it clearly cannot be the result of such a degrada-
tion.

If, therefore, we can trace back a planet and satellite to this state,
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we have most probably found the state where the satellite first had
a separate existence.

The conditions of stability of a rotating mass of fluid are very
obscure, but it seems probable that, if the stability broke down and
the mass gradually separated into two parts, then the condition im-
mediately after separation might be something like the unstable
configuration described above.

In conclusion, I will add a few words to show that the guiding point
on an energy surface need not necessarily move down the steepest path,
but may even depart from the bottom of a furrow or move along
a ridge. Of this two cases will be given.

The satellite will now be again supposed to be merely an attractive
particle.

First, with given moment of momentum, the energy is greater when
the axis of the planet is oblique to the orbit. Hence, if we draw
an energy surface in which one of the co-ordinate axes corresponds to
obliquity, then there must be a furrow in the surface corresponding to
zero obliquity. To conclude that the obliquity of the ecliptic must
diminish in consequence of tidal friction would be erroneous. In fact,
it will appear, in my paper on the * Precession of a Viscous Spheroid,”
that for a planet of small viscosity the position of zero obliquity is
dynamically unstable, if the period of the satellite is greater than
twice that of the planet’s rotation. Thus the guiding point, though
always descending on the energy surface, will depart from the bottom
of the furrow.

Secondly. For given moment of momentum the energy is less if
the orbit be eccentric, and an energy surface may be constructed in
which zero eccentricity corresponds to a ridge. Now, I believe that T
shall be able to show, in a future paper, that for small viscosity of
the planet the circular orbit is dynamically stable if eighteen periods
of the satellite be less than eleven periods of the planet’s rotation.
This will afford a case of the guiding point sliding down a ridge;
when, however, the critical point is passed, the guiding point will
depart from the ridge and the orbit become eccentric.

IX. “Researches in Chemical Equivalence. Part IIL* Nickelous
and Cobaltous Sulphates.” By Epmuxp J. Miurs, D.Se.,
F.R.S., and J. J. SmiTH. Received June 2, 1879.

Although the chemistry of nickel and cobalt is interesting from
many points of view, it is more especially attractive from the probable
isomerism of these mctals. Their combining proportions, in fact,

* For Part II, see “ Proceedings,” vol. xxviii, p. 270.
VOL. XXIX. (0]
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